精英家教网 > 高中数学 > 题目详情
6.某社团组织50名志愿者参加社会公益活动,帮助那些需要帮助的人,各位志愿者根据各自的实际情况,选择了两个不同的活动项目,相关的数据如下表所示:
宣传慰问义工总计
男性志愿者111627
女性志愿者15823
总计262450
(1)先用分层抽样的方法在做义工的志愿者中随机抽取6名志愿者,再从这6名志愿者中又随机抽取2名志愿者,设抽取的2名志愿者中女性人数为ξ,求ξ的数学期望.
(2)如果“宣传慰问”与“做义工”是两个分类变量,那么你有多大把握认为选择做宣传慰问与做义工是与性别有关系的?
附:2×2列联表随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.P(K2≥k)与k对应值表:
参考数据P(K2≥k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879

分析 (1)ξ的可能取值为0,1,2,求出相应的概率,即可求ξ的数学期望.
(2)利用k2=2.981>2.706,可得结论.

解答 解:(1)用分层抽样的方法在做义工的志愿者中随机抽取6名志愿者,抽取比例为$\frac{6}{24}$=$\frac{1}{4}$,
∴女性志愿者为2人,男性志愿者为4人,
∴ξ的可能取值为0,1,2,
P(ξ=0)=$\frac{{C}_{2}^{0}{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$,P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$
∴Eξ=0×$\frac{2}{5}$+1×$\frac{8}{15}$+2×$\frac{1}{15}$=$\frac{2}{3}$;
(2)∵k2=$\frac{50×(11×8-16×15)^{2}}{27×23×26×24}$≈2.981>2.706,
∴有90%的把握认为选择做宣传慰问与做义工是与年龄有关系的.

点评 本题考查了古典概型的概率计算,数学期望,考查了分层抽样方法,考查学生的计算能力,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若点P(1,1)在圆x2+y2+(λ-1)x+2λy+λ=0外,则λ的取值范围是{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一组数据x1,x2,x3,…,xn的方差是a,那么另一组数据x1-2,x2-2,x3-2,…,xn-2的方差是a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合P={1,3},则集合P的子集共有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{4x-4,x≤1}\\{{x}^{2}-4x+3,x>1}\end{array}\right.$,g(x)=-$\frac{1}{x}$,则函数h(x)=f(x)-g(x)的零点个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心在坐标原点,且与直线l1:x-y-2$\sqrt{2}$=0相切
(1)求直线l2:4x-3y+5=0被圆C所截得的弦AB的长.
(2)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0)、F2(3,0),直线y=kx与椭圆交于A、B两点.
(1)若三角形AF1F2的周长为$4\sqrt{3}+6$,求椭圆的标准方程;
(2)若$2\sqrt{3}<a<3\sqrt{2}$,且以AB为直径的圆过椭圆的右焦点,求直线y=kx斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别是a,b,c,若$\frac{a}{cosA}=\frac{{\sqrt{3}c}}{sinC}$,
(1)求A的大小;
(2)若a=3,b+c=3$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=1+1ogx2+1og${\;}_{{x}^{2}}$4+1og${\;}_{{x}^{3}}$8,则使f(x)<0的x的取值范围是(  )
A.(0,1)B.(1,+∞)C.($\frac{1}{8}$,1)D.(0,$\frac{1}{8}$)

查看答案和解析>>

同步练习册答案