精英家教网 > 高中数学 > 题目详情

【题目】已知a>0且满足不等式22a+1>25a2
(1)求实数a的取值范围.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a值.

【答案】
(1)解:∵22a+1>25a2

∴2a+1>5a﹣2,即3a<3,

∴a<1


(2)解:∵a>0,a<1,∴0<a<1,

∵loga(3x+1)<loga(7﹣5x).

∴等价为

即不等式的解集为(


(3)解:∵0<a<1,

∴函数y=loga(2x﹣1)在区间[1,3]上为减函数,

∴当x=3时,y有最小值为﹣2,

即loga5=﹣2,

∴a2= =5,

解得a=


【解析】(1)根据指数函数的单调性解不等式即可求实数a的取值范围.(2)根据对数函数的单调性求不等式loga(3x+1)<loga(7﹣5x).(3)根据复合函数的单调性以及对数的性质即可求出a的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种产品的年固定成本为6万元,每生产1千件需另投入2.9万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)求该公司生产这一产品的最大年利润及相应的年产量.(年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)设 ,若函数存在零点,求的取值范围;

(2)若是偶函数,设,若函数的图象只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(2x﹣1).
(1)求f(x)的定义域;
(2)判断函数f(x)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, )内恒有f(x)>0,则f(x)的单调递增区间是(
A.(﹣∞,﹣
B.
C.
D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O:x2+y2=1和定点A(2,1),由O外一点P(a,b)向O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系.

(2)求线段PQ长的最小值.

(3)若以P为圆心所作的P与O有公共点,试求半径取最小值时P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a4x﹣a2x+1+1﹣b(a>0)在区间[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)﹣k4x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求实数m的值;
(2)若A∩C=,求实数b的取值范围;
(3)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(1)若函数的图象在点处的切线方程为,求实数 的值;

(2)当时,若存在 ,使成立,求实数的最小值.

查看答案和解析>>

同步练习册答案