【题目】为了解学生喜欢校内、校外开展活动的情况,某中学一课外活动小组在学校高一年级进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按,,,,分成五组,绘制的频率分布直方图如图所示,若将不低于60分的称为类学生,低于60分的称为类学生.
(1)根据已知条件完成下面列联表,能否在犯错误的概率不超过的前提下认为性别与是否为类学生有关系?
类 | 类 | 合计 | |
男 | 110 | ||
女 | 50 | ||
合计 |
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中类学生的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.
参考公式:,其中.
参考临界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)列联表见解析; 在犯错误的概率不超过0.01的前提下认为性别与类学生有关.
(2)分布列见解析;;.
【解析】分析:(1)由频率分布直方图可得分数在和之间的学生人数,得出的列联表,利用公式,求解的观测值,即可作出判断.
(2)易知从该校高一学生中随机抽取1人,则该学生为“类”的概率为,进而得到,利用二项分布求得分布列,计算其数学期望.
详解:(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为:
类 | 类 | 合计 | |
男 | 80 | 30 | 110 |
女 | 40 | 50 | 90 |
合计 | 120 | 80 | 200 |
又的观测值为 ,
所以在犯错误的概率不超过0.01的前提下认为性别与类学生有关.
(2)易知从该校高一学生中随机抽取1人,则该学生为“类”的概率为.
依题意知,
所以 ,
所以的分布列为
0 | 1 | 2 | 3 | |
所以期望,方差.
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得 = =9.97,s= = ≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数 作为μ的估计值 ,用样本标准差s作为σ的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆N:x2+(y+ )2=36,P是圆N上的点,点Q在线段NP上,且有点D(0, )和DP上的点M,满足 =2 , =0.
(1)当P在圆上运动时,求点Q的轨迹方程;
(2)若斜率为 的直线l与(1)中所求Q的轨迹交于不同两点A、B,又点C( ,2),求△ABC面积最大值时对应的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某种商品在进价基础上每涨价1元,其销售量就减少10个,已知这种商品进价为40元/个,若按50元一个售出时能卖出500个.
(1)请写出售价x()元与利润y元之间的函数关系式;
(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)当a=0时,求证:f(x)≥0;
(Ⅱ)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)若x>0,证明(ex﹣1)ln(x+1)>x2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2-x)=f(x-1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆C1:+=1,C2:+=1(a>b>0)有相同的离心率,F(﹣ , 0)为椭圆C2的左焦点,过点F的直线l与C1、C2依次交于A、C、D、B四点.
(1)求椭圆C2的方程;
(2)求证:无论直线l的倾斜角如何变化恒有|AC|=|DB|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com