精英家教网 > 高中数学 > 题目详情
14.已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:
①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.
A.1B.2C.3D.5

分析 根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.

解答 解:①若d>5时,直线与圆相离,则m=0,故正确;
②若d=5时,直线与圆相离,则m=1,故正确;
③若1<d<5,则m=2,故错误;
④若d=1时,直线与圆相交,则m=3,故错误;
⑤若d<1时,直线与圆相交,则m=4,故正确.
故选:C.

点评 考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知焦点在y轴上的椭圆方程为$\frac{x^2}{6-m}+\frac{y^2}{m-4}=1$,则m的范围为(  )
A.(4,6)B.(5,6)C.(6,+∞)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),且f($\frac{1}{2}$a+$\frac{π}{4}$)=-$\frac{4\sqrt{2}}{5}$,$\frac{17π}{12}$<α<$\frac{7π}{4}$.
(1)求cosα;
(2)求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数,在其定义域内既是奇函数又是增函数的是(  )
A.y=-log2xB.y=3xC.y=-$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=sin2x-4cosx+5的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=sin$(2x-\frac{π}{6})$-1图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,对称中心坐标为( $\frac{kπ}{2}$+$\frac{π}{12}$,0)k∈Z,函数取得最大值时x的取值集合为{x|x=kπ+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x|x|,则不等式f(x)+f(x2-2)>0的解集为(  )
A.(-2,1)B.(-∞,-2)∪(1,+∞)C.(-∞,-1)∪(2,+∞)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x+3|+|x-1|的最小值为m.
(1)求m的值;
(2)若正实数a,b满足$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{3}$,求证:$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$≥$\frac{m}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:(x2-x)2≥36,命题q:x∈Z.若p∧q与¬q同时为假命题,求x的值.

查看答案和解析>>

同步练习册答案