精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足$f(\frac{π}{6})=f(\frac{5π}{6})=0$,给出以下四个结论:
①ω=3; ②ω≠6k,k∈N*;③φ可能等于$\frac{3}{4}π$; ④符合条件的ω有无数个,且均为整数.
其中所有正确的结论序号是①③.

分析 函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足$f(\frac{π}{6})=f(\frac{5π}{6})=0$,可得ω($\frac{5π}{6}-\frac{π}{6}$)=nπ,ω=$\frac{3}{2}$n(n∈Z),即可得出结论.

解答 解:函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足$f(\frac{π}{6})=f(\frac{5π}{6})=0$,
∴ω($\frac{5π}{6}-\frac{π}{6}$)=nπ,∴ω=$\frac{3}{2}$n(n∈Z),
∴①ω=3正确; ②ω≠6k,k∈N*,不正确;③φ可能等于$\frac{3}{4}π$,正确; ④符合条件的ω有无数个,且均为整数,不正确.
故答案为①③.

点评 本题考查三角函数的图象与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知a=($\frac{1}{3}$)-3,b=log3$\frac{1}{2}$,c=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,则(  )
A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设各项均为正的等比数列{an}满足a4a8=3a7,则log3(a1a2…a9)等于(  )
A.38B.39C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(x,4)满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x等于(  )
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y=2\sqrt{2}sin(ωx+φ)$(其中ω>0,0<φ<π)的图象的一部分如图所示,则(  )
A.$ω=\frac{π}{8}{,_{\;}}φ=\frac{3π}{4}$B.$ω=\frac{π}{8}{,_{\;}}φ=\frac{π}{4}$C.$ω=\frac{π}{4}{,_{\;}}φ=\frac{π}{2}$D.$ω=\frac{π}{4}{,_{\;}}φ=\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\left\{\begin{array}{l}{x^{-2}}{,_{\;}}_{\;}x<0\\ lnx{,_{\;}}_{\;}x>0\end{array}\right.$若f(a)=2,则实数a=e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线,若$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,则四边形ABCD是(  )
A.梯形B.平行四边形C.矩形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数$f(x)=\frac{{{e^2}{x^2}+1}}{x},g(x)=\frac{{{e^2}x}}{e^x}$,对任意x1,x2∈(0,+∞),不等式$\frac{{g({x_1})}}{k}≤\frac{{f({x_2})}}{k+1}$恒成立,则正数k的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.$[\frac{1}{2e-1},+∞)$D.$(\frac{1}{2e-1},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点 A(-4,0),B(4,0),C(0,4),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则 b的取值范围是(  )
A.$({0,4-2\sqrt{2}})$B.$({4-2\sqrt{2},2})$C.$({4-2\sqrt{2},\frac{4}{3}}]$D.$({\frac{4}{3},2}]$

查看答案和解析>>

同步练习册答案