精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆E)过点,其心率等于.

1)求椭圆E的标准方程;

2)若AB分别是椭圆E的左,右顶点,动点M满足,且椭圆E于点P.

①求证:为定值:

②设与以为直径的圆的另一交点为Q,求证:直线经过定点.

【答案】1;(2)①见解析,②见解析.

【解析】

1)由题意的离心率公式和点满足题意方程,结合椭圆的的关系解出方程,进而得到椭圆方程;

2)①设,求得直线的方程,代入椭圆方程,解得点的坐标,再由向量的数量积的坐标表示,计算即可得证;

②先求得的斜率,再由圆的性质可得,求出的斜率,再求直线的方程,即可得到定点.

1)设椭圆焦距为,所以

解得

所以椭圆E的方程为

2)设

①易得直线的方程为:

代入椭圆得,

得,,从而

所以

.

②依题意,

得,

的方程为:,即

所以直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数在区间上的最小值是,求的值;

(3)设是函数图象上任意不同的两点,线段的中点为,直线的斜率为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形是矩形,且平面平面.

(Ⅰ)求证:平面

(Ⅱ)当二面角的平面角的余弦值为,求这个六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.

日期

1

2

3

4

5

温度(℃)

10

11

13

12

8

发芽数(颗)

23

26

32

26

16

1)求余下的2组数据恰好是不相邻2天数据的概率;

2)若选取的是第234天的数据,求关于的线性回归方程

3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?

(参考公式;线性回归方程中系数计算公式:,其中表示样本的平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,证明:

(Ⅲ)求证:对任意正整数,都有 (其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求实数的值;

(2)若,且函数上是单调函数,求实数的值;

(3)若,若当时,总有,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个结论:

①过点,在两轴上的截距相等的直线方程是

②若是等差数列的前n项和,则

③在中,若,则是等腰三角形;

④已知,且,则的最大值是2.

其中正确的结论是________(写出所有正确结论的番号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

同步练习册答案