精英家教网 > 高中数学 > 题目详情

【题目】近年来许多地市空气污染较为严重,现随机抽取某市一年(365天)内100天的空气质量指数()的监测数据,统计结果如表:

指数

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

4

13

18

30

20

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时,对企业没有造成经济损失;当在区间内时,对企业造成的经济损失与成直线模型(当指数为150时,造成的经济损失为1100元,当指数为200时,造成的经济损失为1400元);当指数大于300时,造成的经济损失为2000元. 

(1)试写出的表达式;

(2)试估计在本年内随机抽取1天,该天经济损失大于1100且不超过1700元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,这30天中有8天为严重污染,完成列联表,并判断是否有的把握认为该市本年度空气严重污染与供暖有关?

非严重污染

严重污染

合计

供暖季

非供暖季

合计

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

【答案】(1) (2)0.4;(3)有的把握认为该市本年度空气重度污染与供暖有关.

【解析】

试题分析(1)根据在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时造成的经济损失为2000元,可得函数关系式;(2)由500<S≤900,得150<ω≤250,频数为39,即可求出概率;

(3)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论.

解析:(1)依题意,可得

(2)设“在本年内随机抽取1天,该天经济损失大于1100元且不超过1700元”为事件,由,得,由统计结果,知

即在本年内随机抽取1天,该天经济损失大于1100元且不超过1700元的概率为0.4.

(3)根据题中数据可得如下列联表:

非严重污染

严重污染

合计

供暖季

22

8

30

非供暖季

63

7

70

合计

85

15

100

的观测值

所以有的把握认为该市本年度空气重度污染与供暖有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列中, ,前项和满足).

⑴ 求数列的通项公式;

,求数列的前项和

⑶ 是否存在整数对(其中 )满足?若存在,求出所有的满足题意的整数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

I)若,求函数在点处的切线方程;

II)若函数上是增函数,求实数的取值范围;

III)令是自然对数的底数),求当实数等于多少时,可以使函数取得最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为椭圆 的右焦点, 为椭圆的下、上、右三个顶点, 的面积之比为.

(1)求椭圆的标准方程;

(2)试探究在椭圆上是否存在不同于点 的一点满足下列条件:点轴上的投影为 的中点为,直线交直线于点 的中点为,且的面积为.若不存在,请说明理由;若存在,求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
1)若曲线在点处的切线垂直于轴,求实数的值;

2时,求函数的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,的中点,是等腰三角形,的中点,上一点.

I)若平面,求

II)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由正整数组成的无穷数列,该数列前项的最大值记为,第项之后各项 的最小值记为

I)若 ,是一个周期为的数列(即对任意 ),写出 的值.

II)设是正整数,证明: 的充分必要条件为是公比为的等比数列.

III)证明:若 ,则的项只能是或者,且有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知95个数a1a2a3,…,a95a1a2+a1a3+…+a94a95的最小正值是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,ABBC,E、F分别为A1C1和BC的中点

(1)求证:平面ABE平面B1BCC1

(2)求证:C1F//平面ABE

查看答案和解析>>

同步练习册答案