精英家教网 > 高中数学 > 题目详情
设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x0,使得f(x0)是f(x)的最大值,且g(x0)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=﹣(x﹣2k)2﹣2(x﹣2k),x∈(2k﹣2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).
解:(1)当b=0 时,f(x)=ax2﹣4x,
若a=0,则f(x)=﹣4x 在[2,+∞) 上递减,不合题意,舍去;故a≠0,
要使f(x) 在[2,+∞) 上单调递增,
 ,即a≥1;
(2)若a=0,则f(x)=﹣2 x无最大值,不合题意,故a≠0,
于是f(x)为二次函数,f(x)有最大值 ,
此时,当x=x0时,f(x)取到最大值,
显然,当且仅当x=x0=a时,g(x)取到最小值,故 =a∈Z,
于是a2 
又a∈Z,a<0,所以a=﹣1,b=﹣1,3,
所以满足题意的实数对为(a,b)=(﹣1,﹣1)或(a,b)=(﹣1,3);
(3)∵h(x)=﹣x2+4kx﹣4k2﹣2x+k=﹣[x﹣(2k﹣1)]2+1
∴h(x)取得最小值时x的值为2k﹣1(k∈N),
∴xn=2n﹣3,n∈N*.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数数学公式
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x0,使得f(x0)是f(x)的最大值,且g(x0)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市黄浦区格致中学高三(上)第二次测验数学试卷(理科)(解析版) 题型:解答题

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市黄浦区格致中学高三(上)第二次测验数学试卷(理科)(解析版) 题型:解答题

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)设函数数学公式
(1)当a=2时,用函数单调性定义求f(x)的单调递减区间
(2)若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为a和b,求f(x)>b2恒成立的概率.

查看答案和解析>>

同步练习册答案