精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x2,g(x)=alnx(a>0).
(1)若直线l交f(x)的图象C于A,B两点,与l平行的另一条直线l1切图象于M,求证:A,M,B三点的横坐标成等差数列;
(2)若不等式f(x)≥g(x)恒成立,求a的取值范围;
(3)求证:数学公式(其中e为无理数,约为2.71828).

(1)证明:设切点M的横坐标为x0,A,B点的横坐标分别为x1,x2
因为f′(x)=4x,所以
令AB方程为y=4x0x+b,则由消去y得2x2-4x0x-b=0,
时,x1+x2=2x0,所以A,M,B三点的横坐标成等差数列.…(4分)
(2)解:令F(x)=f(x)-g(x)=2x2-alnx,
令F'(x)=0,得,所以f(x)的减区间为,增区间为
∴F(x)极小值=
不等式f(x)≥g(x)恒成立,等价于
∴a≤4e且a>0,即a∈(0,4e].…(10分)
(3)证明:由(2)得2x2≥4elnx,即,所以
(14分)
分析:(1)设切点M的,A,B点的横坐标分别为x1,x2,求出AB方程与函数f(x)联立,利用韦达定理.即可证得结论;
(2)构造函数令F(x)=f(x)-g(x)=2x2-alnx,确定函数的最小值,不等式f(x)≥g(x)恒成立,等价于最小值大于等于0,由此可得的取值范围;
(3)由(2)得2x2≥4elnx,即,由此进行放缩,即可证得结论.
点评:本题考查导数知识的运用,考查恒成立问题,考查不等式的证明,解题的关键是正确求导,确定函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案