【题目】已知椭圆:()的离心率为,设直线过椭圆的上顶点和右顶点,坐标原点到直线的距离为.
(1)求椭圆的方程.
(2)过点且斜率不为零的直线交椭圆于,两点,在轴的正半轴上是否存在定点,使得直线,的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.
【答案】(1)(2)存在,
【解析】
(1)设直线的方程为,由离心率和原点到直线的距离为,可得关于的方程组,解方程组得即可得答案;
(2)依题意可设直线的方程为,,,直线方程代入曲线方程,利用判别式大于0得的范围,利用韦达定理可得与的关系,并假设存在点
使命题成立,利用斜率公式代入坐标进行计算,将问题转化为恒成立问题,即可得答案.
(1)设椭圆半焦距为.根据题意得,椭圆离心率,即,
所以.①
因为直线过椭圆的上顶点和右顶点,
所以设直线的方程为,即.
又由点到直线的距离为,得.②
联立①②解得,.所以椭圆的方程为.
(2)依题意可设直线的方程为,,.联立得.所以,所以.
所以,,
则,.
假设存在定点(),使得直线,的斜率之积为非零常数,
所以.
要使为非零常数,当且仅当解得(负值舍去).
当时,常数为.
所以轴的正半轴上存在定点,使得直线,的斜率之积为常数.
科目:高中数学 来源: 题型:
【题目】已知点在双曲线(,)上,且双曲线的一条渐近线的方程是.
(1)求双曲线的方程;
(2)若过点且斜率为的直线与双曲线有两个不同的交点,求实数的取值范围;
(3)设(2)中直线与双曲线交于两个不同的点,若以线段为直径的圆经过坐标原点,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,为轴上的点.
(1)过点作直线与相切,求切线的方程;
(2)如果存在过点的直线与抛物线交于,两点,且直线与的倾斜角互补,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在上的函数.
(1)求函数的单调区间;
(2)若存在,使得成立,求实数的取值范围;
(3)定义:如果实数满足, 那么称比更接近.对于(2)中的及,问:和哪个更接近?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,长轴长为.
(Ⅰ)求椭圆的标准方程及离心率;
(Ⅱ)过点的直线与椭圆交于,两点,若点满足,求证:由点 构成的曲线关于直线对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义变换将平面内的点变换到平面内的点;若曲线经变换后得到曲线,曲线经变换后得到曲线,…,依次类推,曲线经变换后得到曲线,当时,记曲线与、轴正半轴的交点为和,某同学研究后认为曲线具有如下性质:①对任意的,曲线都关于原点对称;②对任意的,曲线恒过点;③对任意的,曲线均在矩形(含边界)的内部,其中的坐标为;④记矩形的面积为,则;其中所有正确结论的序号是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com