精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆:()的离心率为,设直线过椭圆的上顶点和右顶点,坐标原点到直线的距离为.

1)求椭圆的方程.

2)过点且斜率不为零的直线交椭圆两点,在轴的正半轴上是否存在定点,使得直线的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.

【答案】12)存在,

【解析】

(1)设直线的方程为,由离心率和原点到直线的距离为,可得关于的方程组,解方程组得即可得答案;

2)依题意可设直线的方程为,直线方程代入曲线方程,利用判别式大于0的范围,利用韦达定理可得的关系,并假设存在点

使命题成立,利用斜率公式代入坐标进行计算,将问题转化为恒成立问题,即可得答案.

1)设椭圆半焦距为.根据题意得,椭圆离心率,即

所以.

因为直线过椭圆的上顶点和右顶点,

所以设直线的方程为,即.

又由点到直线的距离为,得.

联立①②解得.所以椭圆的方程为.

2)依题意可设直线的方程为.联立.所以,所以.

所以

.

假设存在定点(),使得直线的斜率之积为非零常数,

所以.

要使为非零常数,当且仅当解得(负值舍去).

时,常数为.

所以轴的正半轴上存在定点,使得直线的斜率之积为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在双曲线)上,且双曲线的一条渐近线的方程是

(1)求双曲线的方程;

(2)若过点且斜率为的直线与双曲线有两个不同的交点,求实数的取值范围;

(3)设(2)中直线与双曲线交于两个不同的点,若以线段为直径的圆经过坐标原点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上的点.

(1)过点作直线相切,求切线的方程;

(2)如果存在过点的直线与抛物线交于两点,且直线的倾斜角互补,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为2的正方形,底面,四棱锥的体积M的中点.

1)求异面直线所成角的余弦值;

2)求点B到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象恰好经过三个象限,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数.

(1)求函数的单调区间;

(2)若存在,使得成立,求实数的取值范围;

(3)定义:如果实数满足, 那么称更接近.对于(2)中的,问:哪个更接近?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求证:,其中

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,长轴长为

)求椭圆的标准方程及离心率;

)过点的直线与椭圆交于两点,若点满足,求证:由点 构成的曲线关于直线对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义变换将平面内的点变换到平面内的点;若曲线经变换后得到曲线,曲线经变换后得到曲线,依次类推,曲线经变换后得到曲线,当时,记曲线轴正半轴的交点为,某同学研究后认为曲线具有如下性质:①对任意的,曲线都关于原点对称;②对任意的,曲线恒过点;③对任意的,曲线均在矩形(含边界)的内部,其中的坐标为;④记矩形的面积为,则;其中所有正确结论的序号是_______.

查看答案和解析>>

同步练习册答案