精英家教网 > 高中数学 > 题目详情
10.设函数g(x)=x2f(x),若函数f(x)为定义在R上的奇函数,其导函数为f′(x),对任意实数x满足x2f′(x)>2xf(-x),则不等式g(x)<g(1-3x)的解集是(  )
A.$({\frac{1}{4},+∞})$B.(0,$\frac{1}{4}$)C.$({-∞,\frac{1}{4}})$D.$({-∞,\frac{1}{4}})∪({\frac{1}{4},+∞})$

分析 由题意和乘积的导数可得奇函数g(x)=x2f(x)在R上单调递增,可化原不等式为x<1-3x,解之可得.

解答 解:由题意可得函数g(x)=x2f(x)为R上的奇函数,
∵x2f′(x)>2xf(-x),∴x2f′(x)+2xf(x)>0,
∴g′(x)=x2f(x)=2xf(x)+x2f′(x)>0,
∴奇函数g(x)=x2f(x)在R上单调递增,
∴不等式g(x)<g(1-3x)可化为x<1-3x,
解得x<$\frac{1}{4}$
故选:C

点评 本题考查函数的单调性和导数的关系,涉及函数的奇偶性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图所示程序框图中,输出S=(  )
A.-1B.0C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设全集U={1,2,3,4,5},集合M={1,3,4},则集合∁UM={2,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的公差d≠0,且a1,a3,a9构成等比数列{bn}的前3项,则$\frac{a_9}{a_3}$=3;又若d=2,则数列{bn}的前n项的和Sn=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把sin$\frac{π}{12}$,sin$\frac{5}{12}π$,cos$\frac{5}{7}π$,tan$\frac{5}{12}π$由小到大排列为$cos\frac{5π}{7}$<$sin\frac{π}{12}$<$sin\frac{5}{12}π$<$tan\frac{5}{12}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z=(x-1)+yi(x∈R,y≥0),若|z|≤1,则y≥x的概率为(  )
A.$\frac{3}{4}+\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{1}{2}-\frac{1}{π}$D.$\frac{1}{2}+\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=3x|${log_{\frac{1}{3}}}$x|-1的零点个数为2•

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2+bx+c.
(Ⅰ)若f(1)=0,a>b>c.
①求证:f(x)的图象与x轴有两个交点;
②设函数图象与x轴的两个交点分别为A、B,求线段AB的取值范围.
(Ⅱ)若存在x1、x2且x1<x2,f(x1)≠f(x2),试说明方程f(x)=$\frac{f({x}_{1})+f({x}_{2})}{2}$,必有一根在区间(x1,x2)内.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆x2+y2-x+y-1=0的圆心坐标是($\frac{1}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案