精英家教网 > 高中数学 > 题目详情
如图建立空间直角坐标系,已知正方体的棱长为2,
(1)求正方体各顶点的坐标;
(2)求A1C的长度.
考点:空间两点间的距离公式,空间中的点的坐标
专题:计算题,空间位置关系与距离
分析:(1)利用空间直角坐标系中点的坐标表示方法,可得结论;
(2)
A1C
=(2,2,-2),即可求A1C的长度.
解答: 解:(1)由正方体的棱长为2,得AA(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),A1(0,0,2),B1(2,0,2),C1(2,2,2),D1(0,2,2);
(2)
A1C
=(2,2,-2),
∴A1C的长度=|
A1C
|=
4+4+4
=2
3
点评:由空间向量的坐标表示得到空间直角坐标系中点的坐标表示,这是解本题的思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为双曲线C:
x
2
 
-y2=1
的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(  )
A、
1
4
B、
3
4
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC,bc=2b2+2c2-2a2,a=1,sinB+sinc=
10
2
,求b值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,c2=a2+b2)右支(在第一象限内)上的任意一点.A1,A2分别是左右顶点,O是坐标原点,直线PA1,PO,PA2的斜率分别为k1,k2,k3,则斜率之积k1k2k3的取值范围是(  )
A、(0,
a3
b3
B、(0,
b3
a3
C、(0,
a3
c3
D、(0,
b3
c3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=30°,|AB|=2,S△ABC=
3
.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率(  )
A、事件A,B同时发生
B、事件A,B至少有一个发生
C、事件A,B至多有一个发生
D、事件A,B都不发生

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个几何体的正(主)视图与侧(左)视图均为长等于2的正三角形,俯视图如图所示,在俯视图中,半圆的直径与等腰直角三角形的斜边长均为2,则该几何体的体积为(  )
A、
3
π
6
B、
3
(π+2)
6
C、
3
(π+2)
3
D、
3
(π+2)
9

查看答案和解析>>

科目:高中数学 来源: 题型:

3
0
|3x2-12|dx=
 

查看答案和解析>>

同步练习册答案