精英家教网 > 高中数学 > 题目详情
17.四面体ABCD中,已知AB=AC=BC=BD=CD=1,则该四面体体积的最大值是$\frac{1}{8}$,表面积的最大值是$\frac{\sqrt{3}}{2}$+1.

分析 当平面ABC⊥平面BDC时,该四体体积最大;当AC⊥CD,AB⊥BD时,该四面体表面积取最大值.

解答 解:∵四面体ABCD中,AB=AC=BC=BD=CD=1,
∴当平面ABC⊥平面BDC时,该四体体积最大,
此时,过D作DE⊥平面ABC,交BC于E,连结AE,
则AE=DE=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴该四面体体积的最大值:
Smax=$\frac{1}{3}×\frac{1}{2}×1×\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}$=$\frac{1}{8}$.
∵△ABC,△BCD都是边长为1的等边三角形,
面积都是S=$\frac{1}{2}×1×1×sin60°$=$\frac{\sqrt{3}}{4}$,
∴要使表面积最大需△ABD,△ACD面积最大,
∴当AC⊥CD,AB⊥BD时,表面积取最大值,
此时${S}_{△ADC}={S}_{{\;}_{△}ABC}$=$\frac{1}{2}×1×1=\frac{1}{2}$,
四面体表面积最大值Smax=$\frac{1}{2}+\frac{1}{2}+\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}$=1+$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{1}{8}$,$\frac{\sqrt{3}}{2}+1$.

点评 本题考查四面体的体积的最大值和表面积最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,在正方形ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,
①四边形BFD1E一定是平行四边形
②四边形BFD1E有可能是正方形
③四边形BFD1E在底面ABCD内的投影一定是正方形
④四边形BFD1E有可能垂直于平面BB1D
以上结论正确的为①③④.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\vec a,\vec b$,那么$\frac{1}{2}(2\vec a-4\vec b)+2\vec b$等于(  )
A.$\vec a-2\vec b$B.$\overrightarrow{a}$-4$\vec b$C.$\vec a$D.$\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果圆C:(x-a)2+(y-3)2=5的一条切线的方程为y=2x,那么a的值为(  )
A.4或1B.-1或4C.1或-4D.-1或-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},${a_n}=\left\{\begin{array}{l}n+1,n≤7\\ n-1,n>7\end{array}\right.(n∈{N^*})$.
(1)判断数列{an}是否为等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图水平放置的一个平面图形的直观图是边长为1cm的正方形,则原图形的周长是(  )
A.8cmB.6cmC.$2(1+\sqrt{3})cm$D.$2(1+\sqrt{2})cm$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知关于x的不等式ax2+2x+b>0(a≠0)的解集为$\{x|x≠-\frac{1}{a},x∈R\}$,且a>b,则$\frac{{{a^2}+{b^2}+1}}{a-b}$的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知甲、乙二人能译出某种密码的概率分别为$\frac{1}{2}$和$\frac{1}{3}$,现让他们独立地破译这种密码,则至少有1人能译出密码的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从1,2,3,4,5,6,7中任取两个不同的数,事件A为“取到的两个数的和为偶数”,事件B为“取到的两个数均为奇数”则P(B|A)=(  )
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案