精英家教网 > 高中数学 > 题目详情

如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.

(1) ;(2)

解析试题分析:(1)求异面直线所成的角,一般根据定义,过异面直线中的一条上某一点作中一条直线的平行线,把异面直线所成的角化为相交直线所夹的锐角或直角,而这可能通过在三角形中求得,如果图形中有两两相互垂直且交于同一点的三条直线,那么我们可以建立空间直角坐标系,把异面直线所成的角转化为空间两向量的夹角,要注意异面直线所成的角的范围是,而向量的夹角范围是,解题时注意转化;(2)这个几何体我们要通过划分,把它变成几个可求体积的几何体,如三棱锥和四棱锥,这两个棱锥的体积都易求,故原几何体的体积也易求得.
试题解析:(1)解法一:在的延长线上延长至点使得,连接.
由题意得,平面
平面,∴,同理可证.


为平行四边形,
.
(或其补角)为异面直线
所成的角.                          3分
由平面几何知识及勾股定理可以得

中,由余弦定理得

∵ 异面直线的夹角范围为
∴ 异面直线所成的角为.                             7分
解法二:同解法一得所在直线相互垂直,故以为原点,所在直线
分别为轴建立如图所示的空间直角坐标系,                            2分

可得

.               4分
设向量夹角为,则

∵ 异面直线的夹角范围为
∴ 异面直线所成的角为.                 7分
(2)如图,连结,过的垂线,垂足为,则平面,且.   9分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图6,四棱柱的所有棱长都相等,,四边形和四边形为矩形.
(1)证明:底面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方形中,,的中点.将沿折起,使得平面平面.


(1)求证:
(2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.

(1)求证:DA1ED1
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,//平面.

(1)求证:平面
(2)求异面直线所成角的余弦值;
(3)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.

(1)求证:AC⊥DE;
(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.

(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.

查看答案和解析>>

同步练习册答案