如图,几何体中,为边长为的正方形,为直角梯形,,,,,.
(1)求异面直线和所成角的大小;
(2)求几何体的体积.
(1) ;(2).
解析试题分析:(1)求异面直线所成的角,一般根据定义,过异面直线中的一条上某一点作中一条直线的平行线,把异面直线所成的角化为相交直线所夹的锐角或直角,而这可能通过在三角形中求得,如果图形中有两两相互垂直且交于同一点的三条直线,那么我们可以建立空间直角坐标系,把异面直线所成的角转化为空间两向量的夹角,要注意异面直线所成的角的范围是,而向量的夹角范围是,解题时注意转化;(2)这个几何体我们要通过划分,把它变成几个可求体积的几何体,如三棱锥和四棱锥,这两个棱锥的体积都易求,故原几何体的体积也易求得.
试题解析:(1)解法一:在的延长线上延长至点使得,连接.
由题意得,,,平面,
∴平面,∴,同理可证面.
∵ ,,
∴为平行四边形,
∴.
则(或其补角)为异面直线和
所成的角. 3分
由平面几何知识及勾股定理可以得
在中,由余弦定理得
.
∵ 异面直线的夹角范围为,
∴ 异面直线和所成的角为. 7分
解法二:同解法一得所在直线相互垂直,故以为原点,所在直线
分别为轴建立如图所示的空间直角坐标系, 2分
可得,
∴ ,
得. 4分
设向量夹角为,则
.
∵ 异面直线的夹角范围为,
∴ 异面直线和所成的角为. 7分
(2)如图,连结,过作的垂线,垂足为,则平面,且. 9分
∵
科目:高中数学 来源: 题型:解答题
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G.
(l)求证:EG∥;
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(1)求证:DA1⊥ED1;
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥中,//,,,平面,.
(1)求证:平面;
(2)求异面直线与所成角的余弦值;
(3)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角APBD的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.
(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com