B
分析:因为cosα,cosβ是函数f(x)=x
2+ax+b有两个零点,所以可用cosα及cosβ表示f(1)、f(-1),再对α、β分①当
时;②当
时;③当0<α≤
<β<π时,及当0
时讨论即可.
解答:∵函数f(x)=x
2+ax+b有两个零点cosα,cosβ,∴cosα+cosβ=-a,cosα×cosβ=b.
∴f(1)=1+a+b=1-cosα-cosβ+cosα cosβ=(1-cosα)(1-cosβ),
f(-1)=1-a+b=1+cosα+cosβ+cosα cosβ=(1+cosα)(1+cosβ).
∵α,β∈(0,π),下面对α,β分以下三种情况讨论(不妨设α<β).
①当
时,0≤cosβ<cosα<1,
∴1>1-cosα>0,1≥1-cosβ>0,1+cosα>1,1+cosβ≥1,
∴f(1)<1,f(-1)>1.
②当
时,-1<cosβ<cosα≤0,
∴0<1+cosβ<1,0<1+cosα≤1,1-cosβ>1,1-cosα≥1,
∴f(1)>1,f(-1)<1.
③当0<α≤
<β<π时,-1<cosβ<0≤cosα<1,cosαcosβ≤0.
当cosα=0时,f(-1)=1+cosβ<1.
下面对cosαcosβ<0用反证法证明f(1)、f(-1)必有一个小于1.
假设f(1)≥1,f(-1)≥1,
则1-cosα-cosβ+cosα cosβ≥1,1+cosα+cosβ+cosα cosβ≥1,
∴cosαcosβ≥cosα+cosβ≥-cosαcosβ,
∴cosαcosβ≥0,
这与cosαcosβ<0矛盾,故f(1)与f(-1)中必有一个小于1.
对0
时,同理可得f(1)与f(-1)中必有一个小于1.
综上①②③可知:f(1)与f(-1)中必有一个小于1.
故选B.
点评:本题综合考查了一元二次方程的根与系数的关系、函数的零点、三角函数的单调性及值域,分类讨论是解决此问题的关键.