精英家教网 > 高中数学 > 题目详情
给出以下三个命题:
①函数y=sin(
2
-x)
是偶函数;
②直线x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴;
③若α,β都是第一象限角,且α>β,则tanα>tanβ;
④y=|sinx|,y=|tanx|的最小正周期分别为π , 
π
2

其中正确的命题序号是
①②
①②
分析:本题考查的知识点是,判断命题真假,比较综合考查了三角函数的一些性质,我们可以根据三角函数的性质对四个结论逐一进行判断,可以得到正确的结论.
解答:解:由y=sin(
2
-x)
=sin(
π
2
-x)
=cosx,所以函数y=sin(
2
-x)
是偶函数,故命题①正确;
x=
π
8
代入y=sin(2x+
4
)
得,y=sin(2x+
4
)
=sin(2×
π
8
+
4
)
=sin
2
=-1,所以直线x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴,故命题②正确;
α=
13π
6
β=
π
4
,α,β都是第一象限角,且α>β,但tanα<tanβ,故命题③不正确;
y=|sinx|的图象是把y=sinx的图象x轴下方的部分向上翻折,因为y=sinx在x轴下方的图象沿x轴翻折后和x轴上方完全相同,所以y=|sinx|的周期为π,y=|tanx|的图象虽也是把y=tanx的图象x轴下方的部分向上翻折,但因上下形状不同,故翻折后周期不变,所以y=|tanx|的周期为π,故命题④不正确.
故答案为①②.
点评:命题③注意象限角概念的理解;命题④中y=|sinx|和y=|tanx|周期的判断,常借助于图象形状,从图象中能够清晰看出函数的周期.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下三个命题:
(A)已知P(m,4)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的一点,F1、F2是左、右两个焦点,若△PF1F2的内切圆的半径为
3
2
,则此椭圆的离心率e=
4
5

(B)过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一动点M,引圆O:x2+y2=b2的两条切线MA、MB,切点分别为A、B,若∠BMA=
π
2
,则椭圆的离心率e的取值范围为[
3
2
,1)

(C)已知F1(-2,0)、F2(2,0),P是直线x=-1上一动点,则以F1、F2为焦点且过点P的双曲线的离心率e的取值范围是[2,+∞).
其中真命题的代号是
 
(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

6、已知直线a?α,给出以下三个命题:
①若平面α∥平面β,则直线a∥平面β;
②若直线a∥平面β,则平面α∥平面β;
③若直线a不平行于平面β,则平面α不平行于平面β.其中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题,其中所有正确命题的序号为
①②
①②

①设
a
b
均为单位向量,若|
a
+
b
|>1,则θ∈[0,
3
)

②函数f (x)=xsinx+l,当x1,x2∈[-
π
2
π
2
],且|x1|>|x2|时,有f(x1)>f(x2),
③已知函数f (x)=|x2-2|,若f (a)=f (b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题:
(1)将一枚硬币抛掷两次,记事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与事件B是对立事件;
(2)在命题(1)中,事件A与事件B是互斥事件;
(3)在10件产品中有3件是次品,从中任取3件,记事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与事件B是互斥事件.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
③若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=-1对称.
其中正确的命题序号是
 

查看答案和解析>>

同步练习册答案