精英家教网 > 高中数学 > 题目详情

(理)已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求实数a的取值范围.
(III)讨论函数h(x)=ln(1+x2)-数学公式f(x)-k的零点个数?

解:(I)∵f(-x)=f(x)
∴(-x)2+bsin(-x)-2=x2+bsinx-2
∴b=0.
(II)∵g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx

依题意,在(0,1)上恒成立
即2x2+2x+a≥0或2x2+2x+a≤0在(0,1)上恒成立
在(0,1)上恒成立,可知a≥0.
在(0,1)上恒成立,可知a≤-4,
所以a≥0或a≤-4
(III)

所以
令y'=0,则x1=-1,x2=0,x3=1,列表如下:
x(-∞,-1)-1(-1,0)0(0,1)1(1,+∞)
y′+0-0+0-
h(x)单调递增极大值
单调递减极小值1单调递增极大值
单调递减
所以当时,函数无零点;
当k<1或时,函数有两个零点;
当k=1时,函数有三个零点.
时,函数有四个零点.
分析:(I)根据对任意x∈R,有f(-x)=f(x)建立等式关系,即可求出b的值;
(II)g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求导函数,,则在(0,1)上恒成立,然后将a分离出来,研究不等式另一侧的最值即可求出a的范围;
3)令,研究该函数的单调性和极值,结合图形可判断函数的零点个数.
点评:本题以函数为载体,考查函数的性质,考查函数恒成立问题,考查函数的零点以及利用导数研究函数的最值,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理) 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)+2x=x2+b在[
12
,2]
上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的对称轴方程与单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=sinx+ln(1+x).
(I)求证:
1
n
<f(
1
n
)<
2
n
(n∈N+);
(II)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求实数a的取值范围.
(III)讨论函数h(x)=ln(1+x2)-
12
f(x)-k的零点个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(理)已知函数f(x)=2x+1,x∈R.规定:给定一个实数x0,赋值x1=f(x0),若x1≤255,则继续赋值x2=f(x1) …,以此类推,若xn-1≤255,则xn=f(xn-1),否则停止赋值,如果得到xn后停止,则称赋值了n次(n∈N*).已知赋值k次后该过程停止,则x0的取值范围是(  )

查看答案和解析>>

同步练习册答案