精英家教网 > 高中数学 > 题目详情
15.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )
A.乙的众数是21B.甲的中位数是24
C.甲的极差是29D.甲罚球命中率比乙高

分析 利用茎叶图的性质、众数、中位数、极差的定义求解.

解答 解:由茎叶图知,乙的众数是21,故A正确;
甲的中位数是$\frac{22+24}{2}$=23,故B错误;
甲的极差是37-8=29,故C正确;
由茎叶图得到甲的数据集中于茎叶图的左下方,乙的数据集中于茎叶图的右上方,
所以甲罚球命中率比乙高,故D正确.
故选:B.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意茎叶图的性质、众数、中位数、极差的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,在正方形ABCD中,点E,F分别为边BC,AD的中点,将△ABF沿BF所在直线进行翻折,将△CDE沿DE所在直线进行翻折,在翻折的过程中(  )
A.点A与点C在某一位置可能重合B.点A与点C的最大距离为$\sqrt{3}$AB
C.直线AB与直线CD可能垂直D.直线AF与直线CE可能垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,不等式组$\left\{\begin{array}{l}{(x-y-1)(x+y-1)≥0}\\{-1≤x≤3}\end{array}\right.$表示的平面区域的面积为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则cosθ=$\frac{{7\sqrt{2}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f($\frac{π}{6}$)|对一切x∈R恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).
①$f(\frac{5π}{12})=0$;
②$|{f(\frac{7π}{12})}$|≥$|{f(\frac{π}{3})}$|;
③f(x)的单调递增区间是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z);
④f(x)既不是奇函数也不是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设偶函数f(x)满足f(x)=2-x-4(x≤0),则{x|f(x-2)>0}=(  )
A.{x|x<-2或x>4}B.{x|x<-2或x>2}C.{x|x<0或x>4}D.{x|x<0或x>6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某车间加工零件的数量x与加工时间y的统计数据如表:
零件数x(个)182022
加工时间y(分钟)273033
现已求得如表数据的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}{b}$值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为102分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,记a=-log23•f(log${\;}_{\frac{1}{3}}$2),b=f(1),c=4f(0.52),则(  )
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱AA1,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面BEF,则线段A1P长度的取值范围是[$\frac{\sqrt{30}}{5}$,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案