精英家教网 > 高中数学 > 题目详情

数列的前项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)由可得,两式相减得           3分
 ∴
是首项为,公比为得等比数列
                       6分
(Ⅱ)设的公差为
得,可得,可得
故可设

由题意可得
解得
∵等差数列的各项为正,∴
                             10分
              12分
考点:等差数列等比数列性质及由数列前n项和求通项
点评:由前n项和求通项时需分情况讨论:,最终看其结果能否合并为一个关系式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列前三项的和为,前三项的积为.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,,成等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,且不等式对任意的实数恒成立,数列满足.
(1)求的值;
(2)求数列的通项公式;
(3)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正实数的数列的前项和为,且满足).
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的通项公式为),若)成等差数列,求的值;
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列中的三项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{}中,a1=3,
(1)求a1、a2、a3、a4
(2)用合情推理猜测关于n的表达式(不用证明);
(3)用合情推理猜测{}是什么类型的数列并证明;
(4)求{}的前n项的和。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知数列满足.
(Ⅰ)证明数列是等差数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
设数列{}的前n项和为,且=1,,数列{}满足,点P()在直线x―y+2=0上,.
(1)求数列{ },{}的通项公式;
(2)设,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 正项数列{an}满足a1=2,点An)在双曲线y2-x2=1上,点()在直线y=-x+1上,其中Tn是数列{bn}的前n项和。
①求数列{an}、{bn}的通项公式;
②设Cn=anbn,证明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整数m的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)数列中,      
(1)求证:时,是等比数列,并求通项公式。
(2)设  求:数列的前n项的和
(3)设 、 、 。记 ,数列的前n项和。证明: 

查看答案和解析>>

同步练习册答案