精英家教网 > 高中数学 > 题目详情

设等差数列的前项和,且.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.

(1).(2).

解析试题分析:(1)确定等差数列的通项公式,往往利用已知条件,建立相关元素的方程组,如本题,设等差数列的公差为,结合已知,可建立的方程组,
,解得 得到.
(2)首先应确定。然后利用“错位相减法”求得.
试题解析:(1)设等差数列的公差为
 得             2分
 解得                                      4分
故通项公式为                                                5分
(2)由已知 ①
时,                                              6分
时,
②得: 对于也成立
               8分
所以                                   9分
 ③
 ④                              10分
④得:            11分
                         12分


所以                                              14分
考点:等差数列、等比数列的通项公式,“错位相减法”求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线,过上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中.
(1)求的关系式;
(2)令,求证:数列是等比数列;
(3)若为非零整数,),试确定的值,使得对任意,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且;又若是各项为正数的等比数列,且满足,其前项和为.
(1)分别求数列的通项公式
(2)设数列的前项和为,求的表达式,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均为正数,为其前项和,对于任意的,满足关系式
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正整数,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,前
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,满足:.
(Ⅰ)求数列的通项
(Ⅱ)若数列的满足为数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列和公比为的等比数列满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列的前项和为,且对任意均有成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列,即当时,记.记. 对于,定义集合的整数倍,,且.
(1)求集合中元素的个数;
(2)求集合中元素的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对数列,规定为数列的一阶差分数列,其中, 对自然数,规定阶差分数列,其中
(1)已知数列的通项公式,试判断是否为等差或等比数列,为什么?
(2)若数列首项,且满足,求数列的通项公式。
(3)对(2)中数列,是否存在等差数列,使得对一切自然都成立?若存在,求数列的通项公式;若不存在,则请说明理由。

查看答案和解析>>

同步练习册答案