精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{6cos(π+x)+5si{n}^{2}(π-x)-4}{cos(2π-x)}$,且f(m)=2,试求f(-m)的值.

分析 根据函数的奇偶性求解即可.

解答 解:因为f(x)=$\frac{6cosx+5si{n}^{2}x-4}{cosx}$=f(-x),
所以f(x)是偶函数,
又f(m)=2,
故f(-m)=2

点评 本题主要考查的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积$S=\frac{1}{2}[{a^2}-{({b-c})^2}]$.
(Ⅰ)求sinA与cosA的值;
(Ⅱ)设$λ=\frac{b}{a}$,若tanC=2,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合U={x∈Z|-6<x≤5},A={0,2,4},B={0,1,3,5},求:
(Ⅰ)A∪B    
(Ⅱ)(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设$f(x)=\frac{{{2^x}+a}}{{{2^{x+1}}+b}}$是定义在R上的奇函数(a,b为实常数).
(1)求a与b的值;
(2)证明函数f(x)的单调性并求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|0≤x-1≤2},B={x|log2x>1}.
(1)求A∩B,A∪B;
(2)已知集合C={x|1<x<a,a∈R},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.复数z满足(-1+i)z=(1+i)2,其中i为虚数单位,则复数z=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3.若将函数f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{\sqrt{3}}&{1}\end{array}|$的图象向左平移m(m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{5}{6}$πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知奇函数f(x)在(0,+∞)上的图象如图所示,则不等式$\frac{f(x)}{x-1}<0$的解集为(  )
A.(-3,-1)∪(0,1)∪(1,3)B.(-3,-1)∪(0,1)∪(3,+∞)C.(-∞,-3)∪(-1,0)∪(3,+∞)D.(-∞,-3)∪(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式(x-2)(x+2)<0的解集是(-2,2).

查看答案和解析>>

同步练习册答案