精英家教网 > 高中数学 > 题目详情

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

(1)若线段中点的横坐标是,求直线的方程;

(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1;(2

【解析】试题分析:(1)椭圆的离心率公式,及的关系,求得,得到椭圆的方程;设出直线的方程,将直线方程代入椭圆,用舍而不求和韦达定理方法表示出中点坐标,此时代入已知中点的横坐标,即可求出直线的方程;(2)假设存在点,使为常数,分别分当轴不垂直时以及当直线轴垂直时,求出点的坐标,最后综合两种情况得出结论.

试题解析:(1)易求椭圆的方程为

直线斜率不存在时显然不成立,设直线

代入椭圆的方程

消去整理得

,则

因为线段的中点的横坐标为,解得

所以直线的方程为

2)假设在轴上存在点,使得为常数,

当直线轴不垂直时,由(1)知

所以

因为是与无关的常数,从而有

此时

当直线轴垂直时,此时结论成立,

综上可知,在轴上存在定点,使,为常数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若,求的单调区间;

(2)若,讨论时的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,给出下列命题:

若函数f(x)是R上周期为3的偶函数,且满足f(1)=1,则f(2)-f(-4)=0;

若函数f(x)满足f(x+1)f(x)=2 017,则f(x)是周期函数;

若函数g(x)=是偶函数,则f(x)=x+1;

函数y=的定义域为.

其中正确的命题是________.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】倾斜角为的直线过点P(8,2),直线和曲线C:为参数)交于不同的两点M1、M2.

(1)将曲线C的参数方程化为普通方程,并写出直线的参数方程;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点在圆上, ,矩形所在的平面与圆所以的平面互相垂直,已知.

(1)求证:平面平面

(2)当的长为何值时,平面与平面所成的锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的最小值;

(2)若函数的图象恰有一个公共点,求实数的值;

(3)若函数有两个不同的极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形, 是矩形,平面平面 的中点.

(1)求证: 平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)求函数的单调区间;

II)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?

III)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案