分析 由an=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$,利用错位相减法能求出其前n项和Sn.
解答 解:∵an=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$,
∴其前n项和:
Sn=$\frac{1}{2-1}-\frac{1}{4-1}$+$\frac{1}{4-1}-\frac{1}{8-1}$+$\frac{1}{8-1}-\frac{1}{16-1}$+$…+\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$
=1-$\frac{1}{{2}^{n+1}-1}$.
点评 本题考查数列的前n项和的求法,是基础题,解题时要认真审题,注意错位相减法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | f(x)-f(-x)>0 | B. | f(x)-f(-x)≤0 | C. | f(x)•f(-x)≤0 | D. | f(x)•f(-x)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com