【题目】已知函数f(x)=cos(2x+ )+1,△ABC中,角A、B、C的对边分别是a、b、c.
(1)若角A、B、C成等差数列,求f(B)的值;
(2)若f( ﹣ )= ,边a、b、c成等比数列,△ABC的面积S= ,求△ABC的周长.
【答案】
(1)解:∵角A、B、C成等差数列,可得:2B=A+C,
又∵A+B+C=π,
∴B= ,
∴可得:f(B)=cosπ+1=0.
(2)解:∵f( ﹣ )=cos[2( ﹣ )+ ]+1=cosB+1= ,
∴cosB= ,可得sinB= = ,
∴S= acsinB= ac= ,可得:ac=2,
∵a、b、c成等比数列,即b2=ac,
∴b= ,
又∵由余弦定理可得:cosB= = = = ,
∴解得:a+c=3.
∴△ABC的周长=a+b+c=3+ .
【解析】(1)由等差数列的性质及三角形内角和定理可求B的值,进而利用特殊角的三角函数值即可计算得解.(2)化简已知等式可求cosB,利用同角三角函数基本关系式可求sinB,利用三角形面积公式,等比数列的性质可求b,利用余弦定理可求a+c,从而计算得解三角形的周长.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】(本小题满分10分) 选修4-4:极坐标系与参数方程
在极坐标系中曲线的极坐标方程为,点.以极点为原点,以极轴为轴正半轴建立直角坐标系.斜率为的直线过点,且与曲线交于两点.
(Ⅰ)求出曲线的直角坐标方程和直线的参数方程;
(Ⅱ)求点到两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( )
A. 18种 B. 24种 C. 36种 D. 48种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月“关注度”分为6组: , , , , , ,得到如图所示的频率分布直方图.
(1)求的值;
(2)现从“关注度”在的男生与女生中选取3人,设这3人来自男生的人数为,求的分布列与期望;
(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若P为椭圆 =1上任意一点,F1 , F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5﹣ |PF1|;
(2)若∠F1PF2=60°,求|PF1||PF2|之值;
(3)椭圆上是否存在点P,使 =0,若存在,求出P点的坐标,若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com