精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数,恒有. 数列满足,且N*.

(1)求的解析式;

(2)证明:数列单调递增;

(3)记. 若,求.

【答案】(1);(2)见解析;(3)

【解析】

1)利用得到的关系式,利用恒成立,列不等式,由此求得的值,进而求得函数解析式.

2)利用差比较法,结合(1)的结论,证得,由此证得数列单调递增.

3)首先判断,然后证得数列是等比数列,并求得其首项和公比,进而求得其前项和的表达式,利用对数式化为指数式,求得的值.

(1)由,即

因为恒成立,即恒成立,

恒成立,从而,所以

所以表达式为

(2)由于

又因为N*

所以,因此,所以数列单调递增;

(3)因为

所以,即

所以数列是等比数列,其首项,公比,其前项和为,即,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数满足),且

(1)求的解析式;

(2)若函数在区间上是单调函数,求实数的取值范围;

(3)若关于的方程有区间上有一个零点,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过点的直线与圆相交于两点,过点且与垂直的直线与圆的另一交点为

(1)当点坐标为时,求直线的方程;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上有个点,其中每两点之间的连线均染成红色或黑色.若图中总存在两个没有公共边的同色三角形,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l4x3y100,半径为2的圆Cl相切,圆心Cx轴上且在直线l的右上方.

(1)求圆C的方程;

(2)过点M(10)的直线与圆C交于AB两点(Ax轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列. 对,该数列前项的最大值记为,后的最小值记为.

(1)设数列为3,4,7,1. 写出的值;

(2)设是公比大于的等比数列,且,证明是等比数列;

(3)若,证明是常数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在区间上的奇函数,且,若对于任意的m.

(1)判断函数的单调性(不要求证明);

(2)解不等式

(3)若对于任意的恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ,离心率,短轴,抛物线顶点在原点,以坐标轴为对称轴,焦点为

(1)求椭圆和抛物线的方程;

(2)设坐标原点为为抛物线上第一象限内的点,为椭圆是一点,且有,当线段的中点在轴上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市组织高三全体学生参加计算机操作比赛,等级分为110分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如下:

(1)计算两校样本数据的均值和方差,并根据所得数据进行比较.

(2)A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.

查看答案和解析>>

同步练习册答案