精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是( )
A.圆或圆的一部分
B.抛物线或其一部分
C.双曲线或其一部分
D.椭圆或其一部分
【答案】分析:设CC1中点E1,则EE1∥AC,EP与直线AC的夹角等于EP与直线EE1的夹角,由EE1⊥平面DBB1D1,DBB1D1是长方形,知过E与EE1成等角的直线与DBB1D1所在平面的交点集为圆或圆的一部分.
解答:解:设CC1中点E1
则EE1∥AC.
则EP与直线AC的夹角等于EP与直线EE1的夹角,
∵EE1⊥平面DBB1D1
∴过E与EE1成等角的直线与DBB1D1所在平面的交点集为圆,
∵DBB1D1是长方形,不是正方形,
∴P的轨迹是圆或圆的一部分.
故选A.
点评:本题考查轨迹方程的求法,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案