精英家教网 > 高中数学 > 题目详情

如图的几何体中,平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面.

证明见解析.

解析试题分析:(1)要证线面平行,关键是在平面内找一条与待证直线平行的直线,本题中,由于是中点,故很容易让人联想到取另一中点,这里我们取中点,则,故是平行四边形,从而有,平行线找到了,结论得证;(2)要证面垂直,就是要证线面垂直,关键是找哪个平面内的直线,同样本题里由于是等边三角形,故,从而很快得到结论平面,而(1)中有,则有平面,这就是我们要的平面的垂线,由此就证得了面面垂直.
试题解析:(1)证明:取的中点,连结
的中点,∴
平面平面
,∴. 又,∴
∴四边形为平行四边形,则
平面平面, ∴平面.    7分
(2)证明:∵为等边三角形,的中点,∴
平面,∴
,∴
平面
平面, ∴平面平面.      14分

考点:(1)线面平行;(2)面面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图:长方形所在平面与正所在平面互相垂直,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 
的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.

(1)求证:平面A1B1C⊥平面B1BCC1
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱的底面是平行四边形,且底面°,点中点,点中点.

(Ⅰ)求证:平面平面
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.

(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点。

(1)求异面直线所成角的余弦值;
(2)求直线和平面的所成角的正弦值。
(3)求点E到面ABC的距离。

查看答案和解析>>

同步练习册答案