如图的几何体中,平面,平面,△为等边三角形,,为的中点.
(1)求证:平面;
(2)求证:平面平面.
证明见解析.
解析试题分析:(1)要证线面平行,关键是在平面内找一条与待证直线平行的直线,本题中,由于,是中点,故很容易让人联想到取另一中点,这里我们取中点,则∥∥,,故是平行四边形,从而有∥,平行线找到了,结论得证;(2)要证面垂直,就是要证线面垂直,关键是找哪个平面内的直线,同样本题里由于是等边三角形,故,从而很快得到结论平面,而(1)中有∥,则有平面,这就是我们要的平面的垂线,由此就证得了面面垂直.
试题解析:(1)证明:取的中点,连结.
∵为的中点,∴且.
∵平面,平面,
∴,∴. 又,∴.
∴四边形为平行四边形,则.
∵平面,平面, ∴平面. 7分
(2)证明:∵为等边三角形,为的中点,∴
∵平面,,∴.
∵,∴又,
∴平面.
∵平面, ∴平面平面. 14分
考点:(1)线面平行;(2)面面垂直.
科目:高中数学 来源: 题型:解答题
如图:长方形所在平面与正所在平面互相垂直,分别为的中点.
(Ⅰ)求证:平面;
(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点
的位置,并证明你的结论;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.
(1)求证:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,,是棱上的一点,是的延长线与的延长线的交点,且∥平面。
(1)求证:;
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱的底面是平行四边形,且底面,,,°,点为中点,点为中点.
(Ⅰ)求证:平面平面;
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.
(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知三棱锥的侧棱两两垂直,且,,是的中点。
(1)求异面直线与所成角的余弦值;
(2)求直线和平面的所成角的正弦值。
(3)求点E到面ABC的距离。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com