精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数f(x)=x2+5,记a=f(﹣log25),b=f(log23),c=f(﹣1),则a,b,c的大小关系为(
A.c<b<a
B.a<c<b
C.c<a<b
D.a<b<c

【答案】A
【解析】解:∵f(x)是偶函数,∴a=f(﹣log25)=f(log25),c=f(﹣1)=f(1), ∵log25>log23>1,f(x)在(0,+∞)上是增函数,
∴f(log25)>f(log23)>f(1),
∴a>b>c.
故选:A.
【考点精析】关于本题考查的二次函数的性质和对数值大小的比较,需要了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减;几个重要的对数恒等式:;常用对数:,即;自然对数:,即(其中…)才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右顶点A(2,0),且过点
(1)求椭圆C的方程;
(2)过点B(1,0)且斜率为k1(k1≠0)的直线l于椭圆C相交于E,F两点,直线AE,AF分别交直线x=3于M,N两点,线段MN的中点为P,记直线PB的斜率为k2 , 求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意,都有.

(1)若函数的顶点坐标为,求的解析式;

(2)函数的最小值记为,求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求证:平面BCE⊥平面CDE;
(II)求平面BCE与平面ADEB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乡镇为了提高当地地方经济总量,决定引进资金对原有的两个企业进行改造,计划每年对两个企业共投资500万元,要求对每个企业至少投资50万元.根据已有经验,改造后企业的年收益(单位:万元)和企业的年收益(单位:万元)与投入资金(单位:万元)分别满足关系式:.设对企业投资额为(单位:万元),每年两个企业的总收益为(单位:万元).

(1)求

(2)试问如何安排两个企业的投入资金,才能使两个企业的年总收益达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程为(α为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.

(1)写出圆C的极坐标方程及圆心C的极坐标;

(2)直线l的极坐标方程为与圆C交于M,N两点,求CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn为数列{ }的前n项和,求证:1≤Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若非零向量 与向量 的夹角为钝角, ,且当 时, (t∈R)取最小值 .向量 满足 ,则当 取最大值时, 等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题:

①若是第一象限角,且,则

②函数是偶函数;

③函数的一个对称中心是

④函数上是增函数,

所有正确命题的序号是_____

查看答案和解析>>

同步练习册答案