【题目】如图,设矩形所在平面与梯形所在平面相交于.若,,.
(1)求证:;
(2)若,求与面所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)连结、,交于点O,连结,,,从而是边长为1的正三角形,取中点G,连结,,连结,,从而,,由此能求出平面,由此能证明.
(2)过B作,交于点H,连结,以H为原点,为x轴,为y轴,过H作平面的垂线为z轴,建立空间直角坐标系,利用向量法能求出与面所成角的正弦值.
解:(1)证明:连结、,交于点O,连结,
∵矩形所在平面与梯形所在平面相交于.
,,.
∴,,
∴是边长为1的正三角形,
取中点G,连结,,连结,,
∴,,
∵,平面,平面,
∴平面,
∵平面,
∴.
(2)解:∵,∴三棱锥和三棱锥都是棱长为1的正四面体,
过B作,交于点H,连结,
∴,,,,
∴,
∴以H为原点,为x轴,为y轴,过H作平面的垂线为z轴,建立空间直角坐标系,
,,,
平面的法向量,
设与面所成角为,
则,
∴与面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知圆的圆心为,点是圆上的动点,点,线段的垂直平分线交于点.
(1)求点的轨迹的方程;
(2)过点作斜率不为0的直线与(1)中的轨迹交于,两点,点关于轴的对称点为,连接交轴于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂拟制造一个如图所示的容积为36π立方米的有盖圆锥形容器.
(1)若该容器的底面半径为6米,求该容器的表面积;
(2)当容器的高为多少米时,制造该容器的侧面用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级在一次数学竞赛中为全班学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖元、二等奖元、三等奖元、参与奖元,获奖人数的分配情况如图,则以下说法不正确的是( ).
A. 获得参与奖的人数最多
B. 各个奖项中参与奖的总费用最高
C. 购买每件奖品费用的平均数为元
D. 购买的三等奖的奖品件数是一、二等奖的奖品件数和的二倍
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.
(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;
(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”,“生二孩能休多久产假”等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:
产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.
①求两种安排方案休假周数和不低于32周的概率;
②如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为(为参数),曲线的极坐标方程为,若曲线与相交于、两点.
(1)求的值;
(2)求点到、两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.
(1)求椭圆的标准方程;
(2)斜率为的直线与椭圆交于不同的两点,且线段的中垂线交轴于点,求点横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com