精英家教网 > 高中数学 > 题目详情

【题目】设过原点 O 的直线与圆 C : 的一个交点为 P ,点 M 为线段 OP 的中点。
(1)求圆 C 的极坐标方程;
(2)求点 M 轨迹的极坐标方程,并说明它是什么曲线.

【答案】
(1)

【解答】解:圆 的极坐标方程为


(2)

【解答】解:设点 P 的极坐标为 ,点 M 的极坐标为

∵点 M 为线段 OP 的中点,∴

代入圆的极坐标方程,得

∴点 M 轨迹的极坐标方程为 ,它表示圆心在点 ,半径为 的圆.


【解析】本题主要考查了圆的极坐标方程,解决问题的关键是(1)根据极坐标和直角坐标的互化公式 可将极坐标方程化为直角坐标方程。(2)因为点 在圆 上则可设 的极坐标为 的极坐标为 ,点 的极坐标为 并代入 可得点 的极坐标方程
【考点精析】本题主要考查了圆的参数方程的相关知识点,需要掌握圆的参数方程可表示为才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列三个命题:
①若一个球的半径缩小到原来的 ,则其体积缩小到原来的 ;
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2= 相切.
其中真命题的序号是( )
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.

(I)求总决赛中获得门票总收入恰好为300万元的概率;

(II)设总决赛中获得门票总收入为X,求X的均值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知事件在矩ABCD的边CD上随意取一点P,使得△APB的最大边是AB发生的概率为 ,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,, 平面 分别是的中点。

1证明:

2的中点时与平面所成的角最大,且所成角的正切值为,求点A到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是偶函数,且在(﹣∞,0]上是增函数,又f(2)=0,则xf(x)>0的解集是(
A.(﹣2,2)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点.已知f(x)=x2+bx+c
(1)若f(x)有两个不动点为﹣3,2,求函数y=f(x)的零点?
(2)若c= 时,函数f(x)没有不动点,求实数b的取值范围?

查看答案和解析>>

同步练习册答案