【题目】甲和乙两个人计划周末参加志愿者活动,约定在周日早上8:00至8:30之间到某公交站搭乘公交车一起去,已知在这段时间内,共有班公交车到达该站,到站的时间分别为8:05,8:15,8:30,如果他们约定见车就搭乘,则甲和乙两个人恰好能搭乘同一班公交车去的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.
【答案】
【解析】
令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)<0对满足|m|≤2的一切m的值都成立,利用一次函数的单调性可得:f(﹣2)<0,f(2)<0.解出即可.
令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)<0对满足|m|≤2的一切m的值都成立,
则需要f(﹣2)<0,f(2)<0.
解不等式组,解得,
∴x的取值范围是.
【点睛】
本题考查了一次函数的单调性、一元二次不等式的解法,考查了转化方法,考查了推理能力与计算能力,属于中档题.
【题型】解答题
【结束】
21
【题目】某厂有一批长为18m的条形钢板,可以割成1.8m和1.5m长的零件.它们的加工费分别为每个1元和0.6元.售价分别为20元和15元,总加工费要求不超过8元.问如何下料能获得最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的一个顶点为,离心率为.
(1)求椭圆的方程;
(2)若直线与椭园C交于,两点,直线与线的斜率之积为,证明:直线过定点,并求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知短轴长为2的椭圆,直线的横、纵截距分别为,且原点到直线的距离为.
(1)求椭圆的方程;
(2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点,点均在圆上,且,过点作的平行线分别交,于两点.
(1)求点的轨迹方程;
(2)过点的动直线与点的轨迹交于两点.问是否存在常数,使得点为定值?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如表所示的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将列联表补充完整;
患心肺 疾病 | 不患心 肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
(2)是否有97.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式,其中)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com