精英家教网 > 高中数学 > 题目详情
19.若f(x)=ax3+4x+5的图象在(1,f(1))处的切线在x轴上的截距为-$\frac{3}{7}$.则a=1.

分析 由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,由此求得切线的斜率值,再根据x=1求得切点的坐标,最后结合直线的方程求出切线在x轴上的截距,利用条件求出a的值.

解答 解:∵f(x)=ax3+4x+5,∴f′(x)=3ax2+4,
∴f′(1)=3a+4,即切线的斜率为3a+4,
又f(1)=a+9,故切点坐标(1,a+9),
∴切线的方程为:y-a-9=(3a+4)(x-1),当y=0时,x=-$\frac{3}{7}$,代入可得a=1,
故答案为:1.

点评 本小题主要考查导数的几何意义、直线方程的概念、直线在坐标轴上的截距等基础知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.正方体ABCD A1B1C1D1中,E为DD1的中点,则BD1与过A,C,E三点的平面的位置关系是平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知C1在直角坐标系下的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t-1\end{array}\right.(t为参数)$,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ-4sinθ.
(Ⅰ)将C1的方程化为普通方程,并求出C2的直角坐标方程;
(Ⅱ)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|x2≤2},Z为整数集,则集合A∩Z中元素的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在R上的偶函数,在(0,+∞)是增函数,且f(1)=0,则f(x+1)<0的解集为(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等差数列{an}的前n项和为Sn,且S5=a5+a6=25.
(1)求{an}的通项公式;
(2)若不等式2Sn+8n+27>(-1)nk(an+4)对所有的正整数n都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.程序框图如图所示,若输入值t∈(1,3),则输出值S的取值范围是(  )
A.(3,4]B.(3,4)C.[1,9]D.(1,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:方程x2-2$\sqrt{2}$x+m=0有两个不相等的实数根;命题q:2m+1<4.
(1)若p为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移$\frac{π}{6}$个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ=$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案