精英家教网 > 高中数学 > 题目详情
6.下面命题:
①幂函数图象不过第四象限;
②y=x0图象是一条直线;
③若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
④若函数$y=\frac{1}{x}$的定义域是{x|x>2},则它的值域是$\left\{{y\left|{y<\frac{1}{2}}\right.}\right\}$;
⑤若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2},
其中不正确命题的序号是②③④⑤.

分析 根据函数的性质以及函数定义域值域等性质分别进行判断即可.

解答 解:①幂函数图象不过第四象限,正确;
②y=x0图象是一条直线,错误,函数的定义域为(-∞,0)∪(0,+∞),函数的图象为两条射线;
③若函数y=2x的定义域是{x|x≤0},则它的值域是{y|0<y≤1};错误
④若函数$y=\frac{1}{x}$的定义域是{x|x>2},则它的值域是{y|0<y<$\frac{1}{2}$};故错误;
⑤若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2},错误,当定义域为{x|0≤x≤2}时,值域也是{y|0≤y≤4},
故不正确命题的序号②③④⑤,
故答案为:②③④⑤

点评 本题主要考查命题的真假判断,利用函数的性质以及函数定义域,值域,单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知不等式x(x+a)≤b的解集是{x|0≤x≤1},那么a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A={3},B={3,5},则下列表达关系不正确的是(  )
A.A?BB.A⊆BC.3∈BD.5⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{m}$=(sinωx+$\sqrt{3}$cosωx,1),$\overrightarrow{n}$=(2cosωx,-$\sqrt{3}$)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的两条相邻对称轴间的距离为$\frac{π}{2}$,
(1)求函数f(x)的单调递增区间;
(2)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=loga(ax2-2x+1)在区间[2,3]是减函数,则a取值范围为($\frac{3}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M:x2+y2-4y+3=0,Q是x轴上动点,QA、QB分别切圆M于A、B两点,
(1)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程;
(2)求四边形QAMB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=2px(p>0)的焦点为F,点A,B在抛物线上,且满足∠AFB=$\frac{2π}{3}$,过弦AB的中点P作抛物线准线的垂线PM,垂足为M,则$\frac{|PM|}{|AB|}$的最大值为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(文)已知△ABC中,cosA=a,sinB=$\frac{4}{5}$,当a满足条件0时,cosC具有唯一确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$f(x)=\frac{1}{{{2^x}-1}}+a$是奇函数,且函数$g(x)={log_a}[m{x^2}-(m+5)x+12]$在[1,3]上为增函数,则m的取值范围是$\frac{1}{2}$<m≤1.

查看答案和解析>>

同步练习册答案