精英家教网 > 高中数学 > 题目详情

【题目】对于定义在区间上的函数,若同时满足:

)若存在闭区间,使得任取,都有是常数);

)对于内任意,当,时总有恒成立,则称函数为“平底型”函数.

1)判断函数是否是“平底型”函数?简要说明理由;

2)设是(1)中的“平底型”函数,若不等式对一切恒成立,求实数的取值范围;

3)函数是区间上的“平底型”函数,求满足的条件,并说明理由.

【答案】1是“平底型”函数,不是“平底型”函数;理由见解析;(2

3.

【解析】

1)将函数分别表示为分段函数,结合题中定义对这两个函数是否为“平底型”函数进行判断;

2)由(1)知,,由题意得出,利用绝对值三角不等式求出的最小值,然后分三种情况来解不等式,即可得出的取值范围;

3)假设函数是“平底型”函数,则该函数的解析式需满足“平底型”函数的两个条件,化简函数解析式,检验“平底型”函数的两个条件同时具备的值是否存在.

1.

对于函数,当时,

时,;当时,.

所以,函数为“平底型”函数.

对于函数,当时,;当时,.

但区间不是闭区间,所以,函数不是“平底型”函数;

2)由(1)知,

由于不等式对一切恒成立,则.

由绝对值三角不等式得,则有.

①当时,由,得,解得,此时,

②当时,恒成立,此时,

③当时,由,得,解得,此时,.

综上所述,的取值范围是

3.

①当时,

i)若,则,该函数为“平底型”函数;

ii)若,则该函数不是“平底型”函数;

②当时,若时,则,当时,,该函数不是“平底型”函数;

③当时,则

i)若,则该函数不是“平底型”函数;

ii)若,该函数不是“平底型”函数;

iii)若,则,则,显然,该函数不是“平底型”函数.

综上所述,当时,函数是区间上的“平底型”函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆与圆外切于点,且过点,则圆的标准方程为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若,求函数的单调区间;

2)若曲线在点处的切线与直线平行.

①求的值;

②求实数的取值范围,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,平面上有一动点,记点的距离为.若动点满足:.

1)求点的轨迹方程;

2)过的动直线与点的轨迹交于两点,试问:在轴上,是否存在定点,使得为常数?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知位数满足下列条件:①各个数字只能从集合中选取;②若其中有数字,则在的前面不含,将这样的位数的个数记为

1)求

2)探究之间的关系,求出数列的通项公式;

3)对于每个正整数,在之间插入得到一个新数列,设是数列的前项和,试探究能否成立,写出你探究得到的结论并给出证明;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前n组成集合,从集合中任取个数,其所有可能的k个数的乘积的和为(若只取一个数,规定乘积为此数本身),例如:对于数列,当时,时,

1)若集合,求当时,的值;

2)若集合,证明:时集合时集合(为了以示区别,用表示)有关系式,其中

3)对于(2)中集合.定义,求(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个不相等的实数根,那么过两点的直线与圆的位置关系是(

A.相离B.相切C.相交D.的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

同步练习册答案