精英家教网 > 高中数学 > 题目详情

【题目】在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为

优秀

非优秀

总计

甲班

10

乙班

30

合计

(1)请完成上面的列联表;

(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?

P(K2≥x0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

x0

0.455

0.708

1.323

2.072

2.076

3.841

5.024

6.635

7.879

10.828

参考公式及数据:K2=

【答案】(1)

优秀

非优秀

总计

甲班

10

45

55

乙班

20

30

50

合计

30

75

105

; (2)按95%的可能性要求,可以认为“成绩与班级有关系”.

【解析】

1)根据随机抽取1人为优秀的概率为,得出优秀的总人数,从而得出乙班优秀人数,同时也能得出甲班非优秀的人数,其余数据进而可求;

2)根据公式K2=,求出相关指数的值,然后进行对比临界值,即可得出结果.

解:(1)优秀人数为105×=30,

∴乙班优秀人数为30-10=20(人),

甲班非优秀人数为105-30-30=45(人),

故列联表如下:

优秀

非优秀

总计

甲班

10

45

55

乙班

20

30

50

合计

30

75

105

(2)根据列联表中的数据,

所以若按95%的可能性要求,可以认为“成绩与班级有关系”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某次考试结束,甲、乙、丙三位同学聚在一起聊天.甲说:“你们的成绩都没有我高”乙说:“我的成绩一定比丙高 ”丙说:“你们的成绩都比我高 ”成绩公布后,三人成绩互不相同且三人中恰有一人说得不对,若将三人成绩从高到低排序,则甲排在第______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥PO中,AB是圆O的直径,且AB4C是底面圆O上一点,且AC2,点D为半径OB的中点,连接PD.

1)求证:PC在平面APB内的射影是PD

2)若PA4,求底面圆心O到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,…,如图所示,在宝塔形数表中位于第行、第列的数记为,比如.若,则______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究函数的定义域、奇偶性、单调性和最值,并作出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列各题中,用符号连起来.

1实数满足

2

3

4是偶数,是偶数(其中都是整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且 .

(1)若 分别为 的中点,求证: 平面

(2)若 与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数),曲线的参数方程为 (为参数),曲线的极坐标方程为.

(1)求曲线的公共点的极坐标;

(2)若为曲线上的一个动点,求到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数满足

1)求函数的解析式;

2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;

3)若函数,是否存在实数,使函数上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案