精英家教网 > 高中数学 > 题目详情

【题目】为提高城市居民生活幸福感,某城市公交公司大力确保公交车的准点率,减少居民乘车候车时间为此,该公司对某站台乘客的候车时间进行统计乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量满足正态分布在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.

1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计的值;

2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.

(参考数据:

【答案】(1)(2)准点率正常,详见解析

【解析】

(1)由频率分布直方图结合均值和方差公式可求出

(2)由正态分布求得再根据n次独立重复试验中事件发生k次的概率公式求有3名乘客候车时间超过15分钟的概率从而得出结论.

1

2

3名乘客候车时间超过15分钟的事件为

准点率正常

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】M是椭圆T1ab0)上任意一点,F是椭圆T的右焦点,A为左顶点,B为上顶点,O为坐标原点,如下图所示,已知|MF|的最大值为3,且MAF面积最大值为3

1)求椭圆T的标准方程

2)求ABM的面积的最大值S0.若点Nxy)满足xZyZ,称点N为格点.问椭圆T内部是否存在格点G,使得ABG的面积S∈(6S0)?若存在,求出G的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆C:(>>0)的右焦点为F(10),且过点(1),过点F且不与轴重合的直线与椭圆C交于AB两点,点P在椭圆上,且满足.

(1)求椭圆C的标准方程;

(2),求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,分别记录了31日到35日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

31

32

33

34

35

温差

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

他们所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对选取的2组数据进行检验.

1)求选取的2组数据恰好是相邻2天数据的概率;

2)若选取的是31日与35日的两组数据,请根据32日至34日的数据,求出y关于x的线性回归方程;并预报当温差为时的种子发芽数.

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=xx2+3lnx

)求函数fx)的极值;

)证明:曲线yfx)在直线y2x2的下方(除点外).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,;当时,

(2)若的极大值点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面为等边三角形,,点的中点.

1)求证:平面PAD

2)求二面角PBCD的余弦值.

查看答案和解析>>

同步练习册答案