【题目】(1)求与圆心在直线上,且过点A(2,-3),B(-2,-5)的圆C的方程.
(2)设是圆C上的点,求的最大值和最小值.
【答案】(1) 圆C的方程为 (x+1)2+(y+2)2=10,(2) .
【解析】试题分析:(1)设圆的方程为x2+y2+Dx+Ey+F=0,代入A(2,﹣3),B(﹣2,﹣5),C(0,1),建立方程组,求出D,E,F,即可求出圆的方程;
(2)利用圆的参数方程求最值;
试题解析:(1)由于圆心在直线x﹣2y﹣3=0上,故可设圆C的圆心坐标为C(2a+3,a),
再由圆C经过A(2,﹣3)和B(﹣2,﹣5)两点,
可得|CA|=|CB|,∴|CA|2=|CB|2,
∴(2a+1)2+(a+3)2=(2a+5)2+(a+5)2.
解得a=﹣2,故圆心C(﹣1,﹣2),半径r=,
故圆C的方程为 (x+1)2+(y+2)2=10;
(2)
, ,
,
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布
N(-1,1)的部分密度曲线)的点的个数的估计值为
附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4.
A. 1 193 B. 1 359 C. 2 718 D. 3 413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们可以用随机模拟的方法估计的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若输出的结果为,则由此可估计的近似值为( )
A. 3.119 B. 3.124 C. 3.132 D. 3.151
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数在区间上是增函数,且最大值为10,最小值为4,则在区间上的最大值、最小值分别是( )
A. -4,-10 B. 4,-10
C. 10,4 D. 不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有红、白两种颜色的小球共7个,它们除颜色外完全相同,从中任取2个,都是白色小球的概率为,甲、乙两人不放回地从袋中轮流摸取一个小球,甲先取,乙后取,然后再甲取……,直到两人中有一人取到白球时游戏停止,用X表示游戏停止时两人共取小球的个数。
(1)求;
(2)求。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若对恒成立,求实数的取值范围;
(2)是否存在整数,使得函数在区间上存在极小值,若存在,求出所有整数的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com