精英家教网 > 高中数学 > 题目详情

【题目】已知曲线

(1)若,过点的直线交曲线两点,且,求直线的方程;

(2)若曲线表示圆时,已知圆与圆交于两点,若弦所在的直线方程为 为圆的直径,且圆过原点,求实数的值.

【答案】(1) (即) ;(2)

【解析】试题分析:1)由已知条件推导出圆心C12),2为半径,由此利用点到直线的距离公式结合已知条件能求出m=1.
(2)求出圆的方程,两圆相减得公共弦方程,即得m.

试题解析:

(1)时, 曲线C是以为圆心,2为半径的圆,

若直线的斜率不存在,显然不符

故可直线为: ,即

由题意知,圆心到直线的距离等于

即:

解得.故的方程 (即)

(2)由曲线C表示圆,即

所以圆心C(1,2),半径,则必有

设过圆心且与垂直的直线为: ,解得

,所以,圆心

又因为圆过原点,则

所以圆的方程为,整理得:

因为为两圆的公共弦,两圆方程相减得:

所以为直线的方程;又因为;所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:

(1)结合图表信息,补全频率分布直方图;

(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的两个焦点为 ,离心率为,点 在椭圆上, 在线段上,且的周长等于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过圆 上任意一点作椭圆的两条切线与圆交于点 ,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中平面,且

(1)求证:

(2)在线段上,是否存在一点,使得二面角的大小为45°,如果存在,求与平面所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.

1)求ab的值;

2)若对任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售.该店统计了近10天的饮品销量,如图所示:设为每天饮品的销量,为该店每天的利润.

(1)求关于的表达式;

(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆都相内切即圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点为坐标原点过点的平行线交曲线两个不同的点

(1)求曲线的方程

(2)试探究的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由.

查看答案和解析>>

同步练习册答案