精英家教网 > 高中数学 > 题目详情
6.如图,已知ABCO-A1B1C1O1为长方体,OA=OC=2,OO1=4,D为BC1与B1C的交点,E为A1C1与B1O1的交点,求二面角D-A1C1-A的平面角的正切值.

分析 建立空间坐标系,求出平面的法向量,利用向量法先求出二面角D-A1C1-A的平面角余弦值,利用同角的三角函数的关系式即可求出二面角的正切值.

解答 解:建立以O为坐标原点,OA,OC,OO1分别为x,y,z轴的空间直角坐标系如图:
∵OA=OC=2,OO1=4,D为BC1与B1C的交点,E为A1C1与B1O1的交点,
∴O(0,0,0),A(2,0,0),C(0,2,0),O1(0,0,4),A1(2,0,4),B1(2,2,4),D(1,2,2),B(2,2,0),C1(0,2,4),
则平面A1C1A的一个法向量为$\overrightarrow{n}$=$\overrightarrow{OB}$=(2,2,0),
设$\overrightarrow{m}$=(x,y,z)是平面DA1C1的法向量,
则$\overrightarrow{{A}_{1}{C}_{1}}$=(-2,2,0),$\overrightarrow{{A}_{1}D}$=(-1,2,-2),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}{C}_{1}}=-2x+2y=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}D}=-x+2y-2z=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=y}\\{x=2z}\end{array}\right.$,
令z=1,则x=2,y=2,即$\overrightarrow{m}$=(2,2,1),
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2×2+2×2+0}{\sqrt{{2}^{2}+{2}^{2}}•\sqrt{{2}^{2}+{2}^{2}+1}}$=$\frac{8}{2\sqrt{2}•3}$=$\frac{2\sqrt{2}}{3}$,
则sin<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\sqrt{1-(\frac{2\sqrt{2}}{3})^{2}}$=$\frac{1}{3}$,
则tan<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}}$=$\frac{\sqrt{2}}{4}$,
即面角D-A1C1-A的平面角的正切值是$\frac{\sqrt{2}}{4}$.

点评 本题主要考查二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解决本题的关键.综合考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\frac{2x}{x+1}$(x>0),观察:
f1(x)=f(x)=$\frac{2x}{x+1}$,
f2(x)=f(f1(x))=$\frac{4x}{3x+1}$,
f3(x)=f(f2(x))=$\frac{8x}{7x+1}$,
f(x)=f(f3(x))=$\frac{16x}{15x+1}$,

根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=$\frac{{2}^{n}x}{({2}^{n}-1)x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=2cosx,则f′(x)=-2sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=$\sqrt{11}$,且$\overrightarrow{a}$与$\overrightarrow{a}$-$\overrightarrow{b}$夹角的余弦值为$\frac{\sqrt{3}}{3}$,则向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.$\frac{5\sqrt{3}}{3}$B.3C.2或3D.-$\frac{\sqrt{3}}{3}$或$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若y=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是单调减函数,则b的范围是(  )
A.[-1,+∞)B.(-1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,把等腰直角三角形ABC以斜边AB为轴旋转,使C点移动的距离等于AC时停止,并记为点P.
(1)求证:面ABP⊥面ABC;
(2)求二面角C-BP-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=$\frac{1}{2}$PD=1.
(1)证明:平面PQC⊥平面DCQ
(2)求二面角B-PC-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=sinα+cosα\\ y=1+sin2α\end{array}\right.$(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,曲线C2的极坐标方程为ρ=2$\sqrt{2}$acos(θ-$\frac{3π}{4}$)(a>0).
(I)求直线,与曲线C1的交点的极坐标(P,θ)(p≥0,0≤θ<2π).
(Ⅱ)若直线l与C2相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=3,b=3$\sqrt{2}$,A=30°,则B=(  )
A.45°B.135°C.45°或135°D.75°或105°

查看答案和解析>>

同步练习册答案