精英家教网 > 高中数学 > 题目详情
(2013•奉贤区一模)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4
3
;则C的实轴长为
4
4
分析:设出双曲线方程,求出抛物线的准线方程,利用|AB|=4
3
,即可求得结论.
解答:解:设等轴双曲线C的方程为x2-y2=λ.(1)
∵抛物线y2=16x,2p=16,p=8,∴
p
2
=4.
∴抛物线的准线方程为x=-4.
设等轴双曲线与抛物线的准线x=-4的两个交点A(-4,y),B(-4,-y)(y>0),
则|AB|=|y-(-y)|=2y=4
3
,∴y=2
3

将x=-4,y=2
3
代入(1),得(-4)2-(2
3
2=λ,∴λ=4
∴等轴双曲线C的方程为x2-y2=4,即
x2
4
-
y2
4
=1

∴C的实轴长为4.
故答案为:4
点评:本题考查抛物线,双曲线的几何性质,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围是
-4<m<2
-4<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题,假命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)等比数列{cn}满足cn+1+cn=10•4n-1,n∈N*,数列{an}满足cn=2an
(1)求{an}的通项公式;
(2)数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.求
lim
n→∞
Tn

(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|,若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.已知C是直线y=
3
4
x+3上的一个动点,点D的坐标是(0,1),则点C与点D的“非常距离”的最小值是
8
7
8
7

查看答案和解析>>

同步练习册答案