精英家教网 > 高中数学 > 题目详情
9.直线y=$\frac{\sqrt{3}}{3}$x+$\sqrt{2}$与圆心为D的圆(x-$\sqrt{3}$)2+(y-1)2=3交于A,B两点,则直线AD与BD的倾斜角之和为(  )
A.$\frac{7}{6}π$B.$\frac{5}{4}π$C.$\frac{4}{3}π$D.$\frac{5}{3}π$

分析 根据题目条件画出圆的图象与直线的图象,再利用圆的性质建立两个倾斜角的等量关系,化简整理即可求出.

解答 解:直线y=$\frac{\sqrt{3}}{3}$x+$\sqrt{2}$的斜率为$\frac{\sqrt{3}}{3}$,所以它的倾斜角为:$\frac{π}{6}$,
画出直线与圆的图象,
由图象及三角形的外角与不相邻的内角关系,可知:∠1=α-$\frac{π}{6}$,∠2=$\frac{π}{6}$+π-β,
由圆的性质可知,直线AD,BD过圆心,三角形ABD是等腰三角形,
∴∠1=∠2,
∴α-$\frac{π}{6}$=$\frac{π}{6}$+π-β,
故α+β=$\frac{4}{3}$π,
故选:C.

点评 本题主要考查了圆的方程与直线方程的位置关系,直线的倾斜角,三角形的角的关系,直线和圆的方程的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx-4与x轴交于点A(-2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.
(1)求抛物线的解析式;
(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒$\frac{3}{2}$个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等腰三角形顶角的余弦值为$\frac{2}{3}$,那么这个三角形一底角的余弦值为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合P{x|x>9},Q={x|x2>4},则下列结论正确的是(  )
A.P=QB.P∪Q=RC.P?QD.Q?P

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.2008年甲公司员工的年薪有基本工资8000元,住房补贴800元,医疗补贴1000元,交通补贴200元构成,今后逐年将递增25%.而乙公司员工的年薪为20000元,今后逐年将递增10%,解答下列问题:
(1)从2008年至2011年乙公司员工的总收入为多少元?
(2)至少从哪一年甲公司员工的年薪将超过乙公司员工的年薪?(参考数据:lg1.1=0.0414,lg1.25=0.0969,lg2=0.30107)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列3,7,11,…,4n+15的项数为多少项(  )
A.nB.n+2C.n+4D.n+6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{xcosx+cosx+sinx+2}{cosx+2}$(x∈[-8π,8π])的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.奇函数f(x)是定义在(-1,1)上的减函数,若 f(m-1)+f(3-2m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ax2+b,其中a,b,x均为实数,且A={x|f(x)=x},B={x|f(f(x))=x}.
 (1)求证:A⊆B;
(2)当A≠B,并且A,B均不为空集时,求a2+b2的取值范围.

查看答案和解析>>

同步练习册答案