精英家教网 > 高中数学 > 题目详情
已知f(
1
x
)=
1
x+1
,则f(x)=(  )
A、
1
1+x
B、
1+x
x
C、
x
1+x
D、1+x
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:直接换元法,令t=
1
x
代入换元即可.
解答: 解:令
1
x
=t,则x=
1
t

f(t)=
1
1
t
+1
=
t
1+t

函数的解析式为:f(x)=
x
1+x

故选:C.
点评:本题考查函数解析式的求解及常用方法,换元法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用三种不同的颜色,将如图所示的4个区域涂色,每种颜色至少用1次,则相邻的区域不涂同一种颜色的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班关注NBA是否与性别有关,对本班 48人进行了问卷调查得到如下的列联表:
关注NBA不关注NBA合   计
男    生6
女    生10
合    计48
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为
2
3

(1)请将上面列连表补充完整(不用写计算过程);
(2)判断是否有95%的把握认为关注NBA与性别有关?说明你的理由.
下列的临界值表,供参考
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
)其中 n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

21+
1
2
log25
=(  )
A、2+
5
B、2
5
C、2+
5
2
D、1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表:
相关人员数抽取人数
公务员35b
教师a3
自由职业者284
则调查小组的总人数为(  )
A、84B、12C、81D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-y+1=0截圆 x2+y2-2x-4y+1=0的弦长等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin2x,cosx),
n
=(
3
,2cosx)(x∈R),f(x)=
m
n
-1,
(1)求f(x)的单调递增区间.
(2)求f(x)在[0,
π
3
]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式mx2-10x+2m2≤0的解集为A=[1,a],集合B={x|log2(x2-x)>1}.
(Ⅰ)求实数m,a的值;
(Ⅱ)求A∩B,(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是(  )
A、f(x)=(x-1)2
B、f(x)=
1
x
C、f(x)=ex
D、f(x)=lnx

查看答案和解析>>

同步练习册答案