精英家教网 > 高中数学 > 题目详情

数列an满足:log2an+1=1+log2an,前n项和为Sn,若a3=10,则a10=________.

330
分析:由log2an+1=1+log2an可得递推式,又a3=10,可求出,根据求前n项和公式求出a10
解答:由log2an+1=1+log2an
log2an+1由log2an+1-log2an==1,
可得
又a3=a1+a2+a3=5a1=10,得
因而a10=a1+…+a10==330;
故答案为330.
点评:此题主要考查数列递推式及前n项和的计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:an=log(n+1)(n+2),n∈N+,我们把使a1•a2•a3•…•ak为整数的数k(k∈N+)叫做数列{an}的理想数.给出下列关于数列{an}的几个结论:
①数列{an}的最小理想数是2;
②数列{an}的理想数k的形式可以表示为k=4n-2;
③在区间[1,2011]内{an}的所有理想数之和为2026;
④对任意的n∈N+,有an+1>an
其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an•log 
12
an,Sn=b1+b2+…+bn,求使Sn+n•2Pn+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(Ⅰ)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
(Ⅲ)记bn=log(1+2an)Tn,求数列{bn}的前n项之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的单调函数y=f(x),当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并写出适合条件的函数f(x)的一个解析式;
(2)数列{an}满足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通项公式an的表达式;
②令bn=(
1
2
)anSn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn
4
3
Tn
的大小,并加以证明;
③当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
对于不小于2的正整数n恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为sn满足:sn=2an-2n(n∈N*)
(I)已知数列{cn}满足cn=an+2,求证数列{cn}为等比数列;
(II)若数列{bn}满足bn=lo
g
 
2
(an+2)
,Tn为数列(
bn
an+2
)
的前n项和,证:Tn
1
2

查看答案和解析>>

同步练习册答案