分析 (1)由题意可得tanα=$\frac{sinα}{cosα}$=2,而sin2α一2cos2α=$\frac{si{n}^{2}α-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α-2}{ta{n}^{2}α+1}$,代值计算可得;
(2)sin2α+sinαcosα+3=$\frac{si{n}^{2}α+sinαcosα}{si{n}^{2}α+co{s}^{2}α}$+3=$\frac{ta{n}^{2}α+tanα}{ta{n}^{2}α+1}$+3,代值计算可得.
解答 解:(1)∵sinα=2cosα,∴tanα=$\frac{sinα}{cosα}$=2,
∴sin2α一2cos2α=$\frac{si{n}^{2}α-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α-2}{ta{n}^{2}α+1}$=$\frac{{2}^{2}-2}{{2}^{2}+1}$=$\frac{2}{5}$;
(2)sin2α+sinαcosα+3
=$\frac{si{n}^{2}α+sinαcosα}{si{n}^{2}α+co{s}^{2}α}$+3
=$\frac{ta{n}^{2}α+tanα}{ta{n}^{2}α+1}$+3
=$\frac{{2}^{2}+2}{{2}^{2}+1}$+3=$\frac{21}{5}$
点评 本题考查同角三角函数基本关系,弦化切是解决问题的关键,属基础题.
科目:高中数学 来源: 题型:选择题
A. | $f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$ | B. | $f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$ | ||
C. | $f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$ | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{2}$+2y2=1 | B. | $\frac{{x}^{2}}{4}$+y2=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com