精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABC-A1B1C1中,AB=数学公式,BC=2,∠BAC=45°,D是AC1的中点,E是侧棱BB1上的一个动点.
(1)当E是BB1的中点时,证明:DE∥平面A1B1C1
(2)在棱BB1上是否存在点E满足数学公式数学公式,使二面角E-AC1-C是直二面角?若存在,求出λ的值;若不存在,说明理由.

(1)证明:取A1C1中点F,连接DF,DE,B1F
∵D是AC1的中点,E是BB1的中点.
∴DF∥AA1,B1E∥AA1,DF=AA1,B1E=AA1
∴DF∥B1E,DF=B1E,所以DE∥B1F,DE=B1F…(2分)
又B1F?平面A1B1C1,所以DE∥平面A1B1C1…(4分)
(2)解:分别在两底面内作BO⊥AC于O,B1O1⊥A1C1于O1,连接OO1,则OO1∥AA1,以O为原点,OB为x轴,OC为y轴,OO1为z轴建立直角坐标系,
设AA1=t,BE=h,则λ=,A(0,-1,0),C1(0,,t),E((1,0,h).
平面A1ACC1的法向量为=(1,0,0)…(7分)
设平面AC1E的法向量为=(x,y,z)
=(1,1,h),=(0,,h)
∴由可得…(9分)
取z=1得y=,x=
…(11分)
由题知,∴=0
,∴λ==
所以在BB1上存在点E,当时,二面角E-AC1-C是直二面角.…(12分)
分析:(1)取A1C1中点F,连接DF,DE,B1F,利用三角形中位线的性质,可得线线平行,利用线面平行的判定,可得DE∥平面A1B1C1
(2)建立直角坐标系,求出平面A1ACC1的法向量、平面AC1E的法向量,利用数量积为0建立方程,即可求得结论.
点评:本题考查线面平行,考查面面角,考查向量知识的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案