精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在(-∞,+∞)上的奇函数.当x∈(-∞,0)时,f(x)=1-x-x4.则f(x)={
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:坚持求谁设谁的原则,设x>0,则-x<0,将-x代替x代入1-x-x4中,得f(-x)=1+x-x4,利用函数奇偶性即可求得f(x).
解答: 解:设x∈(0,+∞),则-x∈(-∞,0),由x∈(-∞,0)时,f(x)=1-x-x4
得f(-x)=1-(-x)-(-x)4=1+x-x4,又f(x)是奇函数,得f(-x)=-f(x),
故f(x)=-f(-x)=x4-x-1,且f(0)=0,
f(x)=
1-x-x4 ,x<0
0,x=0
-1-x+x4 ,x>0.

故答案为:f(x)=
1-x-x4,x<0
0,x=0
-1-x+x4,x>0
点评:本题开除了利用函数奇偶性求函数解析式的法---代入法,所以基础题,但是容易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了某种需要,某班课外活动经常举行一种叫“电脑闯关比赛”的活动,在一次“电脑闯关比赛”中,A、B两位同学在同等的条件下进行闯关赛,为了预测他们的闯关能力,现随机抽取这两个同学以往一起闯关比赛的结果为:(a,b),(a,
.
b
),(a,b),(
.
a
,b),(
.
a
.
b
),(a,b),(a,b),(a,b),(
.
a
,b),(a,
.
b
),(
.
a
.
b
),(a,b),(a,
.
b
),(
.
a
,b),(a,b)其中a,
.
a
分别表示A同学闯关成功和失败;b,
.
b
分别表示B同学闯关成功和失败.
(1)若闯关成功,则给该同学记2分,否则记0分,试计算A、B两位同学闯关成绩的平均数和方差,并比较A、B两位同学的闯关能力;
(2)现A、B两位同学只进行一次对抗赛,试估算至少有一位同学闯关成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x

(1)用函数单调性的定义证明:函数f(x)在(0,+∞)上是增函数;
(2)求函数f(x)在[3,6]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,-6),|
b
|=
10
a
b
=-10,则向量
a
b
的夹角为(  )
A、150°B、-30°
C、-60°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(x-1)+1(a>0且a≠1)的图象必经过点(  )
A、(0,1)
B、(1,0)
C、(2,1)
D、(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(5x-
x
)n
的展开式的各项系数之和为256,则展开式中x3项的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P为某湖中观光岛屿,AB是沿湖岸南北方向道路,Q为停车场,PQ=
26
5
km.某旅游团游览完岛屿后,乘游船回停车场Q.已知游船以13km/h的速度沿方位角θ的方向行驶,sinθ=
5
13
,游船离开观光岛屿3分钟后,因事耽误没有来得及登上游船的游客甲为了及时赶到停车地点Q与旅游团会合,立即决定租用小船先到达湖岸南北大道M处,然后乘出租车到停车场Q处(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是α,出租车的速度为66km/h.
(Ⅰ)设sinα=
4
5
,问小船的速度为多少km/h,游客甲才能和游船同时到达点Q;
(Ⅱ)设小船速度为10km/h,请你替该游客设计小船行驶的方位角α,当角α余弦值的大小是多少时,游客甲能按计划以最短时间到达Q.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=3,b=
3
,∠A=60°
,则∠B等于(  )
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为△ABC中线AD的中点,D为边BC中点,且AD=2,若
PB
PC
=-3
,则
AB
AC
=
 

查看答案和解析>>

同步练习册答案