精英家教网 > 高中数学 > 题目详情
精英家教网从圆x2+y2=4上任意一点P作x轴的垂线,垂足为Q,点M在线段PQ上,且
QM
QP
(0<λ<1)

(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)如果点A(-3,4)关于直线y=x+4的对称点B在曲线C上,求λ的值.
分析:(Ⅰ)设M(x,y),欲求点M的轨迹C的方程,即寻找x,y之间 的关系式,利用向量间的关系求出P点的坐标后代入圆的方程即可得;
(Ⅱ)先求出点A(-3,4)关于直线y=x+4的对称点B,后将B的坐标代入曲线C的方程即可求得λ.
解答:精英家教网解:(I)设M(x,y),由题意Q(x,0),P(x,y1)(2分)
QM
QP
(0<λ<1)
得,
(0,y)=λ(0,y1),所以y1=
y
λ
,(4分)
∵P(x,y1)在圆x2+y2=4上,
∴点M的轨迹C的方程为
x2
4
+
y2
4λ2
=1(0<λ<).
(6分)
(II)设点B(m,n),依题意有
n-4
m+3
=-1
n+4
2
=
m-3
2
+4
,(9分)
解得m=0,n=1,B(0,1)(11分)
由B在曲线C上得,λ=
1
2
(13分)
点评:求曲线的轨迹方程是解析几何的基本问题,本题考查了利用相关点法求轨迹方程,相关点法  根据相关点所满足的方程,通过转换而求动点的轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从圆x2+y2=4上任意一点P向x轴作垂线段PD,则线段PD的中点M的轨迹方程为
x2
4
+y2=1
x2
4
+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

从圆O:x2+y2=4上任意一点P向x轴作垂线,垂足为P′,点M是线段PP′的中点,则点M的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京市丰台区高三(上)期末数学试卷(文科)(解析版) 题型:解答题

从圆x2+y2=4上任意一点P作x轴的垂线,垂足为Q,点M在线段PQ上,且
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)如果点A(-3,4)关于直线y=x+4的对称点B在曲线C上,求λ的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省温州市十校联考高二(上)期末数学试卷(文科)(解析版) 题型:填空题

从圆x2+y2=4上任意一点P向x轴作垂线段PD,则线段PD的中点M的轨迹方程为   

查看答案和解析>>

同步练习册答案