精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,点是线段上的动点,以下结论:

平面

③三棱锥,体积不变;

中点时,直线与平面所成角最大.

其中正确的序号为( )

A.①④B.②④C.①②③D.①②③④

【答案】D

【解析】

易证平面平面,可知平面;正方体中平面,可知平面得证;由平面上点到平面的距离都相等,即棱锥底不变,高不变可得结论;根据线面角的定义知,因为为定值,即可判断最短时,角最大.

如图,

,,

平面平面

平面平面,①正确;

在正方体中易知平面,又平面平面

所以平面,而平面,所以,故②正确;

因为,可知平面,所以上点到平面的距离都相等,

所以三棱锥的体积不变,故③正确;

由③知,P运动时,P到平面的距离不变,设为,设直线与平面所成角为

,当中点时,最短,所以最大,因为线面角

所以此时最大,故④正确.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,P为直线上的动点,动点Q满足,且原点O在以为直径的圆上.记动点Q的轨迹为曲线C

1)求曲线C的方程:

2)过点的直线与曲线C交于AB两点,点D(异于AB)在C上,直线分别与x轴交于点MN,且,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的最大值;

2)若函数存在两个零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体,已知P是矩形内一动点,与平面所成角为,设P点形成的轨迹长度为,则_________;当的长度最短时,三棱锥的外接球的表面积为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线与直线处相切.

①求的值;

②求证:当时,

2)当时,关于的不等式有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点DE分别是线段BC上的动点(不含端点),且.则下列说法正确的是(

A.平面

B.该三棱柱的外接球的表面积为

C.异面直线所成角的正切值为

D.二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB为圆O的直径,点EF在圆O上,AB//EF,矩形ABCD所在平面和圆O所在平面垂直,且.则( )

A.DF//平面BCE

B.异面直线BFDC所成的角为30°

C.EFC为直角三角形

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为的正方体中,分别为棱的中点.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在疫情这一特殊时期,教育行政部门部署了停课不停学的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:

(Ⅰ)将频率视为概率,求学习时长不超过1小时但考试成绩超过120分的概率;

(Ⅱ)是否有的把握认为高三学生的这次摸底考试数学成绩与其在线学习时长有关”.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案