已知,,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数 都有成立;
(3)求证:.
(1)(2)见解析(3)见解析
【解析】(1)设点为直线与曲线的切点,则有.(*)
,. (**)
由(*)、(**)两式,解得,.……………………………2分
由整理,得,
,要使不等式恒成立,必须恒成立.
设,,
,当时,,则是增函数,
,是增函数,,.…………………5分
因此,实数的取值范围是.………………………………………6分
(2)当时,,
,在上是增函数,在上的最大值为.
要对内的任意个实数都有
成立,必须使得不等式左边的最大值小于或等于右边的最小值,
当时不等式左边取得最大值,时不等式右边取得最小值.
,解得.
因此,的最大值为.………………………………………10分
(3)证明(法一):当时,根据(1)的推导有,时,,
即.………………………………………………………11分
令,得,
化简得,………………………………13分
.………………………14分
(法二)数学归纳法:当时,左边=,右边=,
根据(1)的推导有,时,,即.
令,得,即.
因此,时不等式成立.………………………………11分
(另【解析】
,,,即.)
假设当时不等式成立,即,
则当时,,
要证时命题成立,即证,
即证.
在不等式中,令,得
.
时命题也成立.………………………………………13分
根据数学归纳法,可得不等式对一切成立. …14分
本题主要考查函数的性质、导数运算法则、导数的几何意义及其应用、不等式的求解与证明、数学归纳法等综合知识,考查学生的计算推理能力及分析问题、解决问题的能力及创新意识.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十二第十章第九节练习卷(解析版) 题型:填空题
某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)= .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:解答题
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立.
(1)设该选手参赛的轮次为ξ,求ξ的分布列.
(2)对于(1)中的ξ,设“函数f(x)=3sinπ(x∈R)是偶函数”为事件D,求事件D发生的概率.
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知向量,,(为常数, 是自然对数的底数),曲线在点处的切线与轴垂直,.
(Ⅰ)求的值及的单调区间;
(Ⅱ)已知函数 (为正实数),若对于任意,总存在, 使得,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
若,其中.
(1)当时,求函数在区间上的最大值;
(2)当时,若,恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:解答题
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
查看答案和解析>>
科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:填空题
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,则实数的取值范围是 .
查看答案和解析>>
科目:高中数学 来源:2014年广东省广州市毕业班综合测试一理科数学试卷(解析版) 题型:解答题
已知函数的图象经过点.
(1)求实数的值;
(2)设,求函数的最小正周期与单调递增区间.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷2练习卷(解析版) 题型:解答题
某高校组织自主招生考试,其有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),……,第八组[265,275).如图是按上述分组方法得到的频率分布直方图.
(1)从这2 000名学生中,任取1人,求这个人的分数在255~265之间的概率约是多少?
(2)求这2 000名学生的平均分数;
(3)若计划按成绩取1 000名学生进入面试环节,试估计应将分数线定为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com