精英家教网 > 高中数学 > 题目详情

【题目】某公司采用招考方式引进人才,规定必须在,三个测试中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每测试个点试结果互不影响,若考生小李和小王起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

(1)问小李选择哪两个测试点测试才能使得可以参加面试的可最大说明理由;

(2)假设小李选测试点进行测试,小王选择测试点进行测试,为两人在各测试点测试合格的测试点个数之和,机变的分布列及数.

【答案】(1)择在测试点(2)

【解析】

试题分析:(1)问题实质就是求概率最大的两个测试点测试:分三种情况BC,BD,CD;由于各个事件相互独立,所以应用概率乘法公式求概率,因为在测试点测试概率为,所以择在测试点测试参加面试的可最大.(2)先确定随机变量取法:0,1,2,3,4,再分别求对应概率,列表得概率分布,最后根据数学期望公式求数学期望

试题解析:(1)设考生小李在测试点测试合格记为事件,且各个事件相互独立,由题意.若选择在测试点测试,则参加面试的概率为:;若选择在测试点测试,则参加面试的概率为:;若选择在测试点测试,则参加面试的概率为:;因为,所以小李选择在测试点测试参加面试的可最大.

(2)记小李在测试点测试记为事件,记王在测试点测试记为事件,

.且的所有可能取值为0,1,2,3,4

所以;

;

;

;

.所以,的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知均为直线,为平面,下面关于直线与平面关系的命题:

任意给定一条直线与一个平面,则平面内必存在与垂直的直线;

内必存在与相交的直线;

,必存在与都垂直的直线;

其中正确命题的个数为

A.0个 B.1个

C.2个 D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级学生身体素质体能测试的成绩(百分制)分布在内,同时为了了解学生爱好数学的情况,从中随机抽取了名学生,这名学生体能测试成绩的频率分布直方图如图所示,各分数段的爱好数学的人数情况如表所示.

(1)求的值;

(2)用分层抽样的方法,从体能成绩在爱好数学学生中随机抽取6人参加某项活动,现从6人中随机选取2人担任领队,求两名领队中恰有1人体能成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,,点在线段上.

(1)中点,证明:平面

(2)长是多少时,三棱锥的体积是三棱柱的体积的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数是奇函数

(1)求实数的值

(2)判断的单调性并用函数的单调性定义证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数,且函数处的切线平行于直线.

(1)求实数的值;

(2)若在上存在一点,使得成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若有一个企业70%的员工年收入1万元25%的员工年收入3万元5%的员工年收入11万元则该企业员工的年收入的平均数是________万元中位数是________万元众数是________万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面为直角,分别为的中点.

(Ⅰ)证明: 平面

(Ⅱ)若,求二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)的极值;

(2),记上的最大值为,求函数的最小值;

(3)设函数为常数),若使上恒成立的实数有且只有一个,求实数的值.

查看答案和解析>>

同步练习册答案